// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*- // Functions called from the setup menu static int8_t setup_radio (uint8_t argc, const Menu::arg *argv); static int8_t setup_motors (uint8_t argc, const Menu::arg *argv); static int8_t setup_accel (uint8_t argc, const Menu::arg *argv); static int8_t setup_factory (uint8_t argc, const Menu::arg *argv); static int8_t setup_erase (uint8_t argc, const Menu::arg *argv); static int8_t setup_flightmodes (uint8_t argc, const Menu::arg *argv); static int8_t setup_pid (uint8_t argc, const Menu::arg *argv); static int8_t setup_frame (uint8_t argc, const Menu::arg *argv); static int8_t setup_current (uint8_t argc, const Menu::arg *argv); static int8_t setup_compass (uint8_t argc, const Menu::arg *argv); static int8_t setup_mag_offset (uint8_t argc, const Menu::arg *argv); static int8_t setup_declination (uint8_t argc, const Menu::arg *argv); static int8_t setup_show (uint8_t argc, const Menu::arg *argv); // Command/function table for the setup menu const struct Menu::command setup_menu_commands[] PROGMEM = { // command function called // ======= =============== {"erase", setup_erase}, {"reset", setup_factory}, {"pid", setup_pid}, {"radio", setup_radio}, {"motors", setup_motors}, {"level", setup_accel}, {"modes", setup_flightmodes}, {"frame", setup_frame}, {"current", setup_current}, {"compass", setup_compass}, {"mag_offset", setup_mag_offset}, {"declination", setup_declination}, {"show", setup_show} }; // Create the setup menu object. MENU(setup_menu, "setup", setup_menu_commands); // Called from the top-level menu to run the setup menu. int8_t setup_mode(uint8_t argc, const Menu::arg *argv) { // Give the user some guidance Serial.printf_P(PSTR("Setup Mode\n" "\n" "IMPORTANT: if you have not previously set this system up, use the\n" "'reset' command to initialize the EEPROM to sensible default values\n" "and then the 'radio' command to configure for your radio.\n" "\n")); // Run the setup menu. When the menu exits, we will return to the main menu. setup_menu.run(); } // Print the current configuration. // Called by the setup menu 'show' command. static int8_t setup_show(uint8_t argc, const Menu::arg *argv) { uint8_t i; // clear the area print_blanks(8); report_radio(); report_frame(); report_current(); report_gains(); report_xtrack(); report_throttle(); report_flight_modes(); report_imu(); report_compass(); return(0); } // Initialise the EEPROM to 'factory' settings (mostly defined in APM_Config.h or via defaults). // Called by the setup menu 'factoryreset' command. static int8_t setup_factory(uint8_t argc, const Menu::arg *argv) { uint8_t i; int c; Serial.printf_P(PSTR("\nType 'Y' and hit Enter to perform factory reset, any other key to abort:\n")); do { c = Serial.read(); } while (-1 == c); if (('y' != c) && ('Y' != c)) return(-1); //zero_eeprom(); default_gains(); // setup default values default_waypoint_info(); default_nav(); default_alt_hold(); default_frame(); default_flight_modes(); default_throttle(); default_logs(); default_current(); print_done(); // finish // ------ return(0); } // Perform radio setup. // Called by the setup menu 'radio' command. static int8_t setup_radio(uint8_t argc, const Menu::arg *argv) { Serial.println("\n\nRadio Setup:"); uint8_t i; for(i = 0; i < 100;i++){ delay(20); read_radio(); } if(rc_1.radio_in < 500){ while(1){ Serial.printf_P(PSTR("\nNo radio; Check connectors.")); delay(1000); // stop here } } rc_1.radio_min = rc_1.radio_in; rc_2.radio_min = rc_2.radio_in; rc_3.radio_min = rc_3.radio_in; rc_4.radio_min = rc_4.radio_in; rc_5.radio_min = rc_5.radio_in; rc_6.radio_min = rc_6.radio_in; rc_7.radio_min = rc_7.radio_in; rc_8.radio_min = rc_8.radio_in; rc_1.radio_max = rc_1.radio_in; rc_2.radio_max = rc_2.radio_in; rc_3.radio_max = rc_3.radio_in; rc_4.radio_max = rc_4.radio_in; rc_5.radio_max = rc_5.radio_in; rc_6.radio_max = rc_6.radio_in; rc_7.radio_max = rc_7.radio_in; rc_8.radio_max = rc_8.radio_in; rc_1.radio_trim = rc_1.radio_in; rc_2.radio_trim = rc_2.radio_in; rc_4.radio_trim = rc_4.radio_in; // 3 is not trimed rc_5.radio_trim = 1500; rc_6.radio_trim = 1500; rc_7.radio_trim = 1500; rc_8.radio_trim = 1500; Serial.printf_P(PSTR("\nMove all controls to each extreme. Hit Enter to save: ")); while(1){ delay(20); // Filters radio input - adjust filters in the radio.pde file // ---------------------------------------------------------- read_radio(); rc_1.update_min_max(); rc_2.update_min_max(); rc_3.update_min_max(); rc_4.update_min_max(); rc_5.update_min_max(); rc_6.update_min_max(); rc_7.update_min_max(); rc_8.update_min_max(); if(Serial.available() > 0){ //rc_3.radio_max += 250; Serial.flush(); save_EEPROM_radio(); //delay(100); // double checking //read_EEPROM_radio(); //print_radio_values(); print_done(); break; } } report_radio(); return(0); } static int8_t setup_motors(uint8_t argc, const Menu::arg *argv) { report_frame(); init_rc_in(); // read the radio to set trims // --------------------------- trim_radio(); print_hit_enter(); delay(1000); int out_min = rc_3.radio_min + 70; while(1){ delay(20); read_radio(); motor_out[LEFT] = rc_3.radio_min; motor_out[BACK] = rc_3.radio_min; motor_out[FRONT] = rc_3.radio_min; motor_out[RIGHT] = rc_3.radio_min; if(frame_type == PLUS_FRAME){ if(rc_1.control_in > 0){ motor_out[RIGHT] = out_min; Serial.println("0"); }else if(rc_1.control_in < 0){ motor_out[LEFT] = out_min; Serial.println("1"); } if(rc_2.control_in > 0){ motor_out[BACK] = out_min; Serial.println("3"); }else if(rc_2.control_in < 0){ motor_out[FRONT] = out_min; Serial.println("2"); } }else if(frame_type == X_FRAME){ // lower right if((rc_1.control_in > 0) && (rc_2.control_in > 0)){ motor_out[BACK] = out_min; Serial.println("3"); // lower left }else if((rc_1.control_in < 0) && (rc_2.control_in > 0)){ motor_out[LEFT] = out_min; Serial.println("1"); // upper left }else if((rc_1.control_in < 0) && (rc_2.control_in < 0)){ motor_out[FRONT] = out_min; Serial.println("2"); // upper right }else if((rc_1.control_in > 0) && (rc_2.control_in < 0)){ motor_out[RIGHT] = out_min; Serial.println("0"); } }else if(frame_type == TRI_FRAME){ if(rc_1.control_in > 0){ motor_out[RIGHT] = out_min; }else if(rc_1.control_in < 0){ motor_out[LEFT] = out_min; } if(rc_2.control_in > 0){ motor_out[BACK] = out_min; } if(rc_4.control_in > 0){ rc_4.servo_out = 2000; }else if(rc_4.control_in < 0){ rc_4.servo_out = -2000; } rc_4.calc_pwm(); motor_out[FRONT] = rc_4.radio_out; } if(rc_3.control_in > 0){ APM_RC.OutputCh(CH_1, rc_3.radio_in); APM_RC.OutputCh(CH_2, rc_3.radio_in); APM_RC.OutputCh(CH_3, rc_3.radio_in); APM_RC.OutputCh(CH_4, rc_3.radio_in); }else{ APM_RC.OutputCh(CH_1, motor_out[RIGHT]); APM_RC.OutputCh(CH_2, motor_out[LEFT]); APM_RC.OutputCh(CH_3, motor_out[FRONT]); APM_RC.OutputCh(CH_4, motor_out[BACK]); } if(Serial.available() > 0){ return (0); } } } static int8_t setup_accel(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("\nHold ArduCopter completely still and level.\n")); imu.init_accel(); imu.print_accel_offsets(); report_imu(); return(0); } static int8_t setup_pid(uint8_t argc, const Menu::arg *argv) { default_gains(); report_gains(); } static int8_t setup_flightmodes(uint8_t argc, const Menu::arg *argv) { byte switchPosition, oldSwitchPosition, mode; Serial.printf_P(PSTR("\nMove RC toggle switch to each position to edit, move aileron stick to select modes.")); print_hit_enter(); trim_radio(); while(1){ delay(20); read_radio(); switchPosition = readSwitch(); // look for control switch change if (oldSwitchPosition != switchPosition){ mode = flight_modes[switchPosition]; mode = constrain(mode, 0, NUM_MODES-1); // update the user print_switch(switchPosition, mode); // Remember switch position oldSwitchPosition = switchPosition; } // look for stick input if (radio_input_switch() == true){ mode++; if(mode >= NUM_MODES) mode = 0; // save new mode flight_modes[switchPosition] = mode; // print new mode print_switch(switchPosition, mode); } // escape hatch if(Serial.available() > 0){ save_EEPROM_flight_modes(); print_done(); report_flight_modes(); return (0); } } } static int8_t setup_declination(uint8_t argc, const Menu::arg *argv) { mag_declination = argv[1].f; save_EEPROM_mag_declination(); report_compass(); } static int8_t setup_erase(uint8_t argc, const Menu::arg *argv) { zero_eeprom(); return 0; } static int8_t setup_compass(uint8_t argc, const Menu::arg *argv) { if (!strcmp_P(argv[1].str, PSTR("on"))) { compass_enabled = true; init_compass(); } else if (!strcmp_P(argv[1].str, PSTR("off"))) { compass_enabled = false; } else { Serial.printf_P(PSTR("\nOptions:[on,off]\n")); report_compass(); return 0; } save_EEPROM_mag(); report_compass(); return 0; } static int8_t setup_frame(uint8_t argc, const Menu::arg *argv) { if (!strcmp_P(argv[1].str, PSTR("+"))) { frame_type = PLUS_FRAME; } else if (!strcmp_P(argv[1].str, PSTR("x"))) { frame_type = X_FRAME; } else if (!strcmp_P(argv[1].str, PSTR("tri"))) { frame_type = TRI_FRAME; } else if (!strcmp_P(argv[1].str, PSTR("hexa"))) { frame_type = HEXA_FRAME; } else { Serial.printf_P(PSTR("\nOptions:[+, x, tri, hexa]\n")); report_frame(); return 0; } save_EEPROM_frame(); report_frame(); return 0; } static int8_t setup_current(uint8_t argc, const Menu::arg *argv) { if (!strcmp_P(argv[1].str, PSTR("on"))) { current_enabled = true; save_EEPROM_mag(); } else if (!strcmp_P(argv[1].str, PSTR("off"))) { current_enabled = false; save_EEPROM_mag(); } else if(argv[1].i > 10){ milliamp_hours = argv[1].i; } else { Serial.printf_P(PSTR("\nOptions:[on, off, mAh]\n")); report_current(); return 0; } save_EEPROM_current(); report_current(); return 0; } static int8_t setup_mag_offset(uint8_t argc, const Menu::arg *argv) { Serial.printf_P(PSTR("\nRotate/Pitch/Roll your ArduCopter until the offset variables stop changing.\n")); print_hit_enter(); Serial.printf_P(PSTR("Starting in 3 secs.\n")); delay(3000); compass.init(); // Initialization compass.set_orientation(MAGORIENTATION); // set compass's orientation on aircraft compass.set_offsets(0, 0, 0); // set offsets to account for surrounding interference compass.set_declination(ToRad(DECLINATION)); // set local difference between magnetic north and true north //int counter = 0; float _min[3], _max[3], _offset[3]; while(1){ static float min[3], _max[3], offset[3]; if (millis() - fast_loopTimer > 100) { delta_ms_fast_loop = millis() - fast_loopTimer; fast_loopTimer = millis(); G_Dt = (float)delta_ms_fast_loop / 1000.f; compass.read(); compass.calculate(0, 0); // roll = 0, pitch = 0 for this example // capture min if(compass.mag_x < _min[0]) _min[0] = compass.mag_x; if(compass.mag_y < _min[1]) _min[1] = compass.mag_y; if(compass.mag_z < _min[2]) _min[2] = compass.mag_z; // capture max if(compass.mag_x > _max[0]) _max[0] = compass.mag_x; if(compass.mag_y > _max[1]) _max[1] = compass.mag_y; if(compass.mag_z > _max[2]) _max[2] = compass.mag_z; // calculate offsets offset[0] = -(_max[0] + _min[0]) / 2; offset[1] = -(_max[1] + _min[1]) / 2; offset[2] = -(_max[2] + _min[2]) / 2; // display all to user Serial.printf_P(PSTR("Heading: ")); Serial.print(ToDeg(compass.heading)); Serial.print(" \t("); Serial.print(compass.mag_x); Serial.print(","); Serial.print(compass.mag_y); Serial.print(","); Serial.print(compass.mag_z); Serial.print(")\t offsets("); Serial.print(offset[0]); Serial.print(","); Serial.print(offset[1]); Serial.print(","); Serial.print(offset[2]); Serial.println(")"); if(Serial.available() > 0){ mag_offset_x = offset[0]; mag_offset_y = offset[1]; mag_offset_z = offset[2]; save_EEPROM_mag_offset(); // set offsets to account for surrounding interference compass.set_offsets(mag_offset_x, mag_offset_y, mag_offset_z); report_compass(); break; } } } } /***************************************************************************/ // CLI utilities /***************************************************************************/ void default_waypoint_info() { wp_radius = 4; //TODO: Replace this quick fix with a real way to define wp_radius loiter_radius = 30; //TODO: Replace this quick fix with a real way to define loiter_radius save_EEPROM_waypoint_info(); } void default_nav() { // nav control x_track_gain = XTRACK_GAIN * 100; x_track_angle = XTRACK_ENTRY_ANGLE * 100; pitch_max = PITCH_MAX * 100; save_EEPROM_nav(); } void default_alt_hold() { alt_to_hold = -1; save_EEPROM_alt_RTL(); } void default_frame() { frame_type = PLUS_FRAME; save_EEPROM_frame(); } void default_current() { milliamp_hours = 2000; current_enabled = false; save_EEPROM_current(); } void default_flight_modes() { flight_modes[0] = FLIGHT_MODE_1; flight_modes[1] = FLIGHT_MODE_2; flight_modes[2] = FLIGHT_MODE_3; flight_modes[3] = FLIGHT_MODE_4; flight_modes[4] = FLIGHT_MODE_5; flight_modes[5] = FLIGHT_MODE_6; save_EEPROM_flight_modes(); } void default_throttle() { throttle_min = THROTTLE_MIN; throttle_max = THROTTLE_MAX; throttle_cruise = THROTTLE_CRUISE; throttle_failsafe_enabled = THROTTLE_FAILSAFE; throttle_failsafe_action = THROTTLE_FAILSAFE_ACTION; throttle_failsafe_value = THROTTLE_FS_VALUE; save_EEPROM_throttle(); } void default_logs() { // convenience macro for testing LOG_* and setting LOGBIT_* #define LOGBIT(_s) (LOG_ ## _s ? LOGBIT_ ## _s : 0) log_bitmask = LOGBIT(ATTITUDE_FAST) | LOGBIT(ATTITUDE_MED) | LOGBIT(GPS) | LOGBIT(PM) | LOGBIT(CTUN) | LOGBIT(NTUN) | LOGBIT(MODE) | LOGBIT(RAW) | LOGBIT(CMD) | LOGBIT(CURRENT); #undef LOGBIT save_EEPROM_logs(); } void default_gains() { // acro, angular rate pid_acro_rate_roll.kP(ACRO_RATE_ROLL_P); pid_acro_rate_roll.kI(ACRO_RATE_ROLL_I); pid_acro_rate_roll.kD(ACRO_RATE_ROLL_D); pid_acro_rate_roll.imax(ACRO_RATE_ROLL_IMAX * 100); pid_acro_rate_pitch.kP(ACRO_RATE_PITCH_P); pid_acro_rate_pitch.kI(ACRO_RATE_PITCH_I); pid_acro_rate_pitch.kD(ACRO_RATE_PITCH_D); pid_acro_rate_pitch.imax(ACRO_RATE_PITCH_IMAX * 100); pid_acro_rate_yaw.kP(ACRO_RATE_YAW_P); pid_acro_rate_yaw.kI(ACRO_RATE_YAW_I); pid_acro_rate_yaw.kD(ACRO_RATE_YAW_D); pid_acro_rate_yaw.imax(ACRO_RATE_YAW_IMAX * 100); // stabilize, angle error pid_stabilize_roll.kP(STABILIZE_ROLL_P); pid_stabilize_roll.kI(STABILIZE_ROLL_I); pid_stabilize_roll.kD(STABILIZE_ROLL_D); pid_stabilize_roll.imax(STABILIZE_ROLL_IMAX * 100); pid_stabilize_pitch.kP(STABILIZE_PITCH_P); pid_stabilize_pitch.kI(STABILIZE_PITCH_I); pid_stabilize_pitch.kD(STABILIZE_PITCH_D); pid_stabilize_pitch.imax(STABILIZE_PITCH_IMAX * 100); // YAW hold pid_yaw.kP(YAW_P); pid_yaw.kI(YAW_I); pid_yaw.kD(YAW_D); pid_yaw.imax(YAW_IMAX * 100); // custom dampeners // roll pitch stabilize_dampener = STABILIZE_DAMPENER; //yaw hold_yaw_dampener = HOLD_YAW_DAMPENER; // navigation pid_nav_lat.kP(NAV_P); pid_nav_lat.kI(NAV_I); pid_nav_lat.kD(NAV_D); pid_nav_lat.imax(NAV_IMAX); pid_nav_lon.kP(NAV_P); pid_nav_lon.kI(NAV_I); pid_nav_lon.kD(NAV_D); pid_nav_lon.imax(NAV_IMAX); pid_baro_throttle.kP(THROTTLE_BARO_P); pid_baro_throttle.kI(THROTTLE_BARO_I); pid_baro_throttle.kD(THROTTLE_BARO_D); pid_baro_throttle.imax(THROTTLE_BARO_IMAX); pid_sonar_throttle.kP(THROTTLE_SONAR_P); pid_sonar_throttle.kI(THROTTLE_SONAR_I); pid_sonar_throttle.kD(THROTTLE_SONAR_D); pid_sonar_throttle.imax(THROTTLE_SONAR_IMAX); save_EEPROM_PID(); } /***************************************************************************/ // CLI utilities /***************************************************************************/ void report_current() { print_blanks(2); read_EEPROM_current(); Serial.printf_P(PSTR("Current Sensor\n")); print_divider(); print_enabled(current_enabled); Serial.printf_P(PSTR("mah: %d"),milliamp_hours); print_blanks(2); } void report_frame() { print_blanks(2); read_EEPROM_frame(); Serial.printf_P(PSTR("Frame\n")); print_divider(); if(frame_type == X_FRAME) Serial.printf_P(PSTR("X ")); else if(frame_type == PLUS_FRAME) Serial.printf_P(PSTR("Plus ")); else if(frame_type == TRI_FRAME) Serial.printf_P(PSTR("TRI ")); else if(frame_type == HEXA_FRAME) Serial.printf_P(PSTR("HEXA ")); Serial.printf_P(PSTR("frame (%d)"), (int)frame_type); print_blanks(2); } void report_radio() { print_blanks(2); Serial.printf_P(PSTR("Radio\n")); print_divider(); // radio read_EEPROM_radio(); print_radio_values(); print_blanks(2); } void report_gains() { print_blanks(2); Serial.printf_P(PSTR("Gains\n")); print_divider(); read_EEPROM_PID(); // Acro Serial.printf_P(PSTR("Acro:\nroll:\n")); print_PID(&pid_acro_rate_roll); Serial.printf_P(PSTR("pitch:\n")); print_PID(&pid_acro_rate_pitch); Serial.printf_P(PSTR("yaw:\n")); print_PID(&pid_acro_rate_yaw); // Stabilize Serial.printf_P(PSTR("\nStabilize:\nroll:\n")); print_PID(&pid_stabilize_roll); Serial.printf_P(PSTR("pitch:\n")); print_PID(&pid_stabilize_pitch); Serial.printf_P(PSTR("yaw:\n")); print_PID(&pid_yaw); Serial.printf_P(PSTR("Stabilize dampener: %4.3f\n"), stabilize_dampener); Serial.printf_P(PSTR("Yaw Dampener: %4.3f\n\n"), hold_yaw_dampener); // Nav Serial.printf_P(PSTR("Nav:\nlat:\n")); print_PID(&pid_nav_lat); Serial.printf_P(PSTR("long:\n")); print_PID(&pid_nav_lon); Serial.printf_P(PSTR("baro throttle:\n")); print_PID(&pid_baro_throttle); Serial.printf_P(PSTR("sonar throttle:\n")); print_PID(&pid_sonar_throttle); print_blanks(2); } void report_xtrack() { print_blanks(2); Serial.printf_P(PSTR("Crosstrack\n")); print_divider(); // radio read_EEPROM_nav(); Serial.printf_P(PSTR("XTRACK: %4.2f\n" "XTRACK angle: %d\n" "PITCH_MAX: %d"), x_track_gain, x_track_angle, pitch_max); print_blanks(2); } void report_throttle() { print_blanks(2); Serial.printf_P(PSTR("Throttle\n")); print_divider(); read_EEPROM_throttle(); Serial.printf_P(PSTR("min: %d\n" "max: %d\n" "cruise: %d\n" "failsafe_enabled: %d\n" "failsafe_value: %d"), throttle_min, throttle_max, throttle_cruise, throttle_failsafe_enabled, throttle_failsafe_value); print_blanks(2); } void report_imu() { print_blanks(2); Serial.printf_P(PSTR("IMU\n")); print_divider(); imu.print_gyro_offsets(); imu.print_accel_offsets(); print_blanks(2); } void report_compass() { print_blanks(2); Serial.printf_P(PSTR("Compass\n")); print_divider(); read_EEPROM_compass(); read_EEPROM_compass_declination(); read_EEPROM_compass_offset(); print_enabled(compass_enabled); // mag declination Serial.printf_P(PSTR("Mag Delination: %4.4f\n"), mag_declination); // mag offsets Serial.printf_P(PSTR("Mag offsets: %4.4f, %4.4f, %4.4f"), mag_offset_x, mag_offset_y, mag_offset_z); print_blanks(2); } void report_flight_modes() { print_blanks(2); Serial.printf_P(PSTR("Flight modes\n")); print_divider(); read_EEPROM_flight_modes(); for(int i = 0; i < 6; i++ ){ print_switch(i, flight_modes[i]); } print_blanks(2); } /***************************************************************************/ // CLI utilities /***************************************************************************/ void print_PID(PID * pid) { Serial.printf_P(PSTR("P: %4.3f, I:%4.3f, D:%4.3f, IMAX:%ld\n"), pid->kP(), pid->kI(), pid->kD(), (long)pid->imax()); } void print_radio_values() { Serial.printf_P(PSTR("CH1: %d | %d\n"), rc_1.radio_min, rc_1.radio_max); Serial.printf_P(PSTR("CH2: %d | %d\n"), rc_2.radio_min, rc_2.radio_max); Serial.printf_P(PSTR("CH3: %d | %d\n"), rc_3.radio_min, rc_3.radio_max); Serial.printf_P(PSTR("CH4: %d | %d\n"), rc_4.radio_min, rc_4.radio_max); Serial.printf_P(PSTR("CH5: %d | %d\n"), rc_5.radio_min, rc_5.radio_max); Serial.printf_P(PSTR("CH6: %d | %d\n"), rc_6.radio_min, rc_6.radio_max); Serial.printf_P(PSTR("CH7: %d | %d\n"), rc_7.radio_min, rc_7.radio_max); Serial.printf_P(PSTR("CH8: %d | %d\n"), rc_8.radio_min, rc_8.radio_max); } void print_switch(byte p, byte m) { Serial.printf_P(PSTR("Pos %d: "),p); Serial.println(flight_mode_strings[m]); } void print_done() { Serial.printf_P(PSTR("\nSaved Settings\n\n")); } void print_blanks(int num) { while(num > 0){ num--; Serial.println(""); } } void print_divider(void) { for (int i = 0; i < 40; i++) { Serial.print("-"); } Serial.println(""); } // for reading in vales for mode switch boolean radio_input_switch(void) { static byte bouncer; if (abs(rc_1.radio_in - rc_1.radio_trim) > 200) bouncer = 10; if (bouncer > 0) bouncer--; if (bouncer == 1){ return true; }else{ return false; } } void zero_eeprom(void) { byte b; Serial.printf_P(PSTR("\nErasing EEPROM\n")); for (int i = 0; i < EEPROM_MAX_ADDR; i++) { eeprom_write_byte((uint8_t *) i, b); } Serial.printf_P(PSTR("done\n")); } void print_enabled(boolean b) { if(b) Serial.printf_P(PSTR("en")); else Serial.printf_P(PSTR("dis")); Serial.printf_P(PSTR("abled\n")); }