/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
simulate Hirth EFI system
*/
#include "SIM_Aircraft.h"
#include
#include
#include
#include "SIM_EFI_Hirth.h"
using namespace SITL;
// assume SERVO3 is throttle
#define HIRTH_RPM_INDEX 2
void EFI_Hirth::update_receive()
{
const ssize_t num_bytes_read = read_from_autopilot((char*)&receive_buf[receive_buf_ofs], ARRAY_SIZE(receive_buf) - receive_buf_ofs);
if (num_bytes_read < 0) {
return;
}
receive_buf_ofs += num_bytes_read;
if (receive_buf_ofs < 1) {
return;
}
const uint8_t expected_bytes_in_message = receive_buf[0];
if (expected_bytes_in_message == 0) {
AP_HAL::panic("zero bytes expected is unexpected");
}
if (expected_bytes_in_message > ARRAY_SIZE(receive_buf)) {
AP_HAL::panic("Unexpectedly large byte count");
}
if (receive_buf_ofs < expected_bytes_in_message) {
return;
}
// checksum is sum of all bytes except the received checksum:
const uint8_t expected_checksum = 256U - crc_sum_of_bytes(receive_buf, expected_bytes_in_message-1);
const uint8_t received_checksum = receive_buf[expected_bytes_in_message-1];
if (expected_checksum == received_checksum) {
PacketCode received_packet_code = PacketCode(receive_buf[1]);
if (received_packet_code == PacketCode::SetValues) {
// do this synchronously for now
handle_set_values();
} else if (uint8_t(received_packet_code) == 0x04 ||
uint8_t(received_packet_code) == 0x0B ||
uint8_t(received_packet_code) == 0x0D) {
assert_receive_size(3);
if (requested_data_record.time_ms != 0) {
AP_HAL::panic("Requesting too fast?");
}
requested_data_record.code = received_packet_code;
requested_data_record.time_ms = AP_HAL::millis();
} else {
AP_HAL::panic("Invalid packet code");
}
} else {
AP_HAL::panic("checksum failed");
// simply throw these bytes away. What the actual device does in the
// face of weird data is unknown.
}
memmove(&receive_buf[0], &receive_buf[expected_bytes_in_message], receive_buf_ofs - expected_bytes_in_message);
receive_buf_ofs -= expected_bytes_in_message;
}
void EFI_Hirth::assert_receive_size(uint8_t receive_size)
{
if (receive_buf[0] != receive_size) {
AP_HAL::panic("Expected %u message size, got %u message size", receive_size, receive_buf[0]);
}
}
void EFI_Hirth::handle_set_values()
{
assert_receive_size(23);
static_assert(sizeof(settings) == 20, "correct number of bytes in settings");
memcpy((void*)&settings, &receive_buf[2], sizeof(settings));
// send ACK for set-values
constexpr uint8_t set_values_ack[] {
3, // length
uint8_t(PacketCode::SetValues), // code
3 + uint8_t(PacketCode::SetValues)
};
write_to_autopilot((const char*)set_values_ack, sizeof(set_values_ack));
}
void EFI_Hirth::update_send()
{
if (requested_data_record.time_ms == 0) {
// no outstanding request
return;
}
if (AP_HAL::millis() - requested_data_record.time_ms < 20) {
// 20ms to service a request
return;
}
requested_data_record.time_ms = 0;
switch (requested_data_record.code) {
case PacketCode::DataRecord1:
send_record1();
break;
case PacketCode::DataRecord2:
send_record2();
break;
case PacketCode::DataRecord3:
send_record3();
break;
default:
AP_HAL::panic("Unknown data record (%u) requested", (unsigned)requested_data_record.code);
}
}
void EFI_Hirth::update_engine_model()
{
auto sitl = AP::sitl();
// FIXME: this should come from simulation, not baro. baro gets
// warmed by the simulated electronics!
const float ambient = AP::baro().get_temperature();
const uint32_t now_ms = AP_HAL::millis();
const float delta_t = (now_ms - engine.last_update_ms) * 1e-6;
engine.last_update_ms = now_ms;
// lose heat to environment (air-cooling due to airspeed and prop
// airflow could be taken into account here)
const float ENV_LOSS_FACTOR = 25;
engine.cht1_temperature -= (engine.cht1_temperature - ambient) * delta_t * ENV_LOSS_FACTOR;
engine.cht2_temperature -= (engine.cht2_temperature - ambient) * delta_t * ENV_LOSS_FACTOR;
const float rpm = sitl->state.rpm[HIRTH_RPM_INDEX];
const float RPM_GAIN_FACTOR_CHT1 = 10;
const float RPM_GAIN_FACTOR_CHT2 = 8;
engine.cht1_temperature += rpm * delta_t * RPM_GAIN_FACTOR_CHT1;
engine.cht2_temperature += rpm * delta_t * RPM_GAIN_FACTOR_CHT2;
}
void EFI_Hirth::init()
{
// auto sitl = AP::sitl();
if (is_zero(AP::baro().get_temperature())) {
// defer until the baro has had a chance to update....
return;
}
engine.cht1_temperature = AP::baro().get_temperature();
engine.cht2_temperature = AP::baro().get_temperature();
init_done = true;
}
void EFI_Hirth::update()
{
const auto *sitl = AP::sitl();
if (!sitl || sitl->efi_type != SIM::EFI_TYPE_HIRTH) {
return;
}
if (!init_done) {
init();
}
// update throttle; interim thing to make life a little more interesting
throttle = 0.9 * throttle + 0.1 * settings.throttle/10;
update_engine_model();
update_receive();
update_send();
}
uint16_t EFI_Hirth::engine_status_field_value() const
{
return (
0U << 0 | // engine temperature sensor
1U << 1 | // air temperature sensor
1U << 2 | // air pressure sensor
1U << 3 // throttle sensor OK
);
}
void SITL::EFI_Hirth::send_record1()
{
const auto *sitl = AP::sitl();
// notionally the field updates should happen in the update()
// method, but here to save CPU for now:
auto &r = packed_record1.record;
r.engine_status = engine_status_field_value();
r.rpm = sitl->state.rpm[HIRTH_RPM_INDEX];
r.air_temperature = AP::baro().get_temperature();
r.throttle = settings.throttle / 10; // just echo this back
packed_record1.update_checksum();
write_to_autopilot((char*)&packed_record1, sizeof(packed_record1));
ASSERT_STORAGE_SIZE(Record1, 84);
}
void SITL::EFI_Hirth::send_record2()
{
const auto *sitl = AP::sitl();
// notionally the field updates should happen in the update()
// method, but here to save CPU for now:
auto &r = packed_record2.record;
r.throttle_percent_times_10 = throttle * 10.0;
r.fuel_consumption = ((MAX(sitl->state.rpm[HIRTH_RPM_INDEX] - 1500.0, 0)) /2200.0) * 10; // from log, very rough
packed_record2.update_checksum();
write_to_autopilot((char*)&packed_record2, sizeof(packed_record2));
ASSERT_STORAGE_SIZE(Record2, 98);
}
void SITL::EFI_Hirth::send_record3()
{
// notionally the field updates should happen in the update()
// method, but here to save CPU for now:
auto &r = packed_record3.record;
r.excess_temperature_1 = engine.cht1_temperature; // cht1
r.excess_temperature_2 = engine.cht2_temperature; // cht2
r.excess_temperature_3 = 39; // egt1
r.excess_temperature_4 = 41; // egt2
packed_record3.update_checksum();
write_to_autopilot((char*)&packed_record3, sizeof(packed_record3));
ASSERT_STORAGE_SIZE(Record3, 100);
}