/// @file AP_MotorsHeli_Single.h /// @brief Motor control class for traditional heli #pragma once #include #include // ArduPilot Mega Vector/Matrix math Library #include #include "AP_MotorsHeli.h" #include "AP_MotorsHeli_RSC.h" #include "AP_MotorsHeli_Swash.h" #include "AP_Motors_Thrust_Linearization.h" // rsc and extgyro function output channels. #define AP_MOTORS_HELI_SINGLE_EXTGYRO CH_7 #define AP_MOTORS_HELI_SINGLE_TAILRSC CH_7 // direct-drive variable pitch defaults #define AP_MOTORS_HELI_SINGLE_DDVP_SPEED_DEFAULT 50 // default external gyro gain #define AP_MOTORS_HELI_SINGLE_EXT_GYRO_GAIN 350 // COLYAW parameter min and max values #define AP_MOTORS_HELI_SINGLE_COLYAW_RANGE 5.0f // maximum number of swashplate servos #define AP_MOTORS_HELI_SINGLE_NUM_SWASHPLATE_SERVOS 3 /// @class AP_MotorsHeli_Single class AP_MotorsHeli_Single : public AP_MotorsHeli { public: // constructor AP_MotorsHeli_Single(uint16_t speed_hz = AP_MOTORS_HELI_SPEED_DEFAULT) : AP_MotorsHeli(speed_hz), _tail_rotor(SRV_Channel::k_heli_tail_rsc, AP_MOTORS_HELI_SINGLE_TAILRSC, 1U), _swashplate(AP_MOTORS_MOT_1, AP_MOTORS_MOT_2, AP_MOTORS_MOT_3, AP_MOTORS_MOT_5, 1U) { AP_Param::setup_object_defaults(this, var_info); }; // set update rate to motors - a value in hertz void set_update_rate(uint16_t speed_hz) override; // output_to_motors - sends values out to the motors void output_to_motors() override; // set_desired_rotor_speed - sets target rotor speed as a number from 0 ~ 1 void set_desired_rotor_speed(float desired_speed) override; // calculate_scalars - recalculates various scalars used void calculate_scalars() override; // calculate_armed_scalars - recalculates scalars that can change while armed void calculate_armed_scalars() override; // get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used) // this can be used to ensure other pwm outputs (i.e. for servos) do not conflict uint32_t get_motor_mask() override; // ext_gyro_gain - set external gyro gain in range 0 ~ 1000 void ext_gyro_gain(float gain) override { if (gain >= 0 && gain <= 1000) { _ext_gyro_gain_std.set(gain); }} // has_flybar - returns true if we have a mechical flybar bool has_flybar() const override { return _flybar_mode; } // supports_yaw_passthrough - returns true if we support yaw passthrough bool supports_yaw_passthrough() const override { return get_tail_type() == TAIL_TYPE::SERVO_EXTGYRO; } void set_acro_tail(bool set) override { _acro_tail = set; } // Run arming checks bool arming_checks(size_t buflen, char *buffer) const override; // Helper function for param conversions to be done in motors class void heli_motors_param_conversions(void) override; // Thrust Linearization handling Thrust_Linearization thr_lin {*this}; #if HAL_LOGGING_ENABLED // Blade angle logging - called at 10 Hz void Log_Write(void) override; #endif // var_info static const struct AP_Param::GroupInfo var_info[]; protected: // init_outputs - initialise Servo/PWM ranges and endpoints void init_outputs() override; // update_motor_controls - sends commands to motor controllers void update_motor_control(AP_MotorsHeli_RSC::RotorControlState state) override; // heli_move_actuators - moves swash plate and tail rotor void move_actuators(float roll_out, float pitch_out, float coll_in, float yaw_out) override; // move_yaw - moves the yaw servo void move_yaw(float yaw_out); // Get yaw offset required to cancel out steady state main rotor torque float get_yaw_offset(float collective); // handle output limit flags and send throttle to servos lib void output_to_ddfp_tail(float throttle); // servo_test - move servos through full range of movement void servo_test() override; // Tail types enum class TAIL_TYPE { SERVO = 0, SERVO_EXTGYRO = 1, DIRECTDRIVE_VARPITCH = 2, DIRECTDRIVE_FIXEDPITCH_CW = 3, DIRECTDRIVE_FIXEDPITCH_CCW = 4, DIRECTDRIVE_VARPIT_EXT_GOV = 5 }; TAIL_TYPE get_tail_type() const { return TAIL_TYPE(_tail_type.get()); } // Helper to return true for direct drive fixed pitch tail, either CW or CCW bool have_DDFP_tail() const; // Helper to return true if the tail RSC should be used bool use_tail_RSC() const; // external objects we depend upon AP_MotorsHeli_RSC _tail_rotor; // tail rotor AP_MotorsHeli_Swash _swashplate; // swashplate // internal variables float _oscillate_angle = 0.0f; // cyclic oscillation angle, used by servo_test function float _servo_test_cycle_time = 0.0f; // cycle time tracker, used by servo_test function float _collective_test = 0.0f; // over-ride for collective output, used by servo_test function float _roll_test = 0.0f; // over-ride for roll output, used by servo_test function float _pitch_test = 0.0f; // over-ride for pitch output, used by servo_test function float _yaw_test = 0.0f; // over-ride for yaw output, used by servo_test function float _servo4_out = 0.0f; // output value sent to motor // parameters AP_Int16 _tail_type; // Tail type used: Servo, Servo with external gyro, direct drive variable pitch or direct drive fixed pitch AP_Int16 _ext_gyro_gain_std; // PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro AP_Int16 _ext_gyro_gain_acro; // PWM sent to external gyro on ch7 when tail type is Servo w/ ExtGyro in ACRO AP_Int8 _flybar_mode; // Flybar present or not. Affects attitude controller used during ACRO flight mode AP_Int16 _direct_drive_tailspeed; // Direct Drive VarPitch Tail ESC speed (0 ~ 1000) AP_Float _collective_yaw_scale; // Feed-forward compensation to automatically add rudder input when collective pitch is increased. Can be positive or negative depending on mechanics. AP_Float _yaw_trim; // Fixed offset applied to yaw output to reduce yaw I. bool _acro_tail = false; };