/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
// Copyright 2012 Andrew Tridgell, all rights reserved.
// Refactored by Jonathan Challinger
#pragma once
#include "definitions.h"
#include "matrix3.h"
#include
#if MATH_CHECK_INDEXES
#include
#endif
#include
template
class QuaternionT {
public:
T q1, q2, q3, q4;
// constructor creates a quaternion equivalent
// to roll=0, pitch=0, yaw=0
QuaternionT()
{
q1 = 1;
q2 = q3 = q4 = 0;
}
// setting constructor
QuaternionT(const T _q1, const T _q2, const T _q3, const T _q4) :
q1(_q1), q2(_q2), q3(_q3), q4(_q4)
{
}
// setting constructor
QuaternionT(const T _q[4]) :
q1(_q[0]), q2(_q[1]), q3(_q[2]), q4(_q[3])
{
}
// check if any elements are NAN
bool is_nan(void) const WARN_IF_UNUSED
{
return isnan(q1) || isnan(q2) || isnan(q3) || isnan(q4);
}
// populate the supplied rotation matrix equivalent from this quaternion
void rotation_matrix(Matrix3f &m) const;
void rotation_matrix(Matrix3d &m) const;
// make this quaternion equivalent to the supplied matrix
void from_rotation_matrix(const Matrix3 &m);
// create a quaternion from a given rotation
void from_rotation(enum Rotation rotation);
// rotate this quaternion by the given rotation
void rotate(enum Rotation rotation);
// convert a vector from earth to body frame
void earth_to_body(Vector3 &v) const;
// create a quaternion from Euler angles using 321 euler ordering
void from_euler(T roll, T pitch, T yaw);
void from_euler(const Vector3 &v);
// create a quaternion from Euler angles applied in yaw, roll, pitch order (312)
// instead of the normal yaw, pitch, roll order
void from_vector312(T roll, T pitch, T yaw);
// convert this quaternion to a rotation vector where the direction of the vector represents
// the axis of rotation and the length of the vector represents the angle of rotation
void to_axis_angle(Vector3 &v) const;
// create a quaternion from a rotation vector where the direction of the vector represents
// the axis of rotation and the length of the vector represents the angle of rotation
void from_axis_angle(Vector3 v);
// create a quaternion from its axis-angle representation
// the axis vector must be length 1. the rotation angle theta is in radians
void from_axis_angle(const Vector3 &axis, T theta);
// rotate by the provided rotation vector
void rotate(const Vector3 &v);
// create a quaternion from a rotation vector
// only use with small angles. I.e. length of v should less than 0.17 radians (i.e. 10 degrees)
void from_axis_angle_fast(Vector3 v);
// create a quaternion from its axis-angle representation
// the axis vector must be length 1, theta should less than 0.17 radians (i.e. 10 degrees)
void from_axis_angle_fast(const Vector3 &axis, T theta);
// create a quaternion by integrating an angular velocity over some time_delta, which is
// assumed to be small
void from_angular_velocity(const Vector3& angular_velocity, float time_delta);
// rotate by the provided rotation vector
// only use with small angles. I.e. length of v should less than 0.17 radians (i.e. 10 degrees)
void rotate_fast(const Vector3 &v);
// get euler roll angle in radians
T get_euler_roll() const;
// get euler pitch angle in radians
T get_euler_pitch() const;
// get euler yaw angle in radians
T get_euler_yaw() const;
// create eulers (in radians) from a quaternion, using 321 ordering
void to_euler(float &roll, float &pitch, float &yaw) const;
void to_euler(Vector3f &rpy) const {
to_euler(rpy.x, rpy.y, rpy.z);
}
void to_euler(double &roll, double &pitch, double &yaw) const;
void to_euler(Vector3d &rpy) const {
to_euler(rpy.x, rpy.y, rpy.z);
}
// create eulers from a quaternion with 312 ordering
Vector3 to_vector312(void) const;
T length_squared(void) const;
T length(void) const;
void normalize();
// Checks if each element of the quaternion is zero
bool is_zero(void) const;
// zeros the quaternion to [0, 0, 0, 0], an invalid quaternion
// See initialize() if you want the zero rotation quaternion
void zero(void);
// Checks if the quaternion is unit_length within a tolerance
// Returns True: if its magnitude is close to unit length +/- 1E-3
// This limit is somewhat greater than sqrt(FLT_EPSL)
bool is_unit_length(void) const;
// initialise the quaternion to no rotation
void initialise()
{
q1 = 1.0f;
q2 = q3 = q4 = 0.0f;
}
QuaternionT inverse(void) const;
// reverse the rotation of this quaternion
void invert();
// allow a quaternion to be used as an array, 0 indexed
T & operator[](uint8_t i)
{
T *_v = &q1;
#if MATH_CHECK_INDEXES
assert(i < 4);
#endif
return _v[i];
}
const T & operator[](uint8_t i) const
{
const T *_v = &q1;
#if MATH_CHECK_INDEXES
assert(i < 4);
#endif
return _v[i];
}
QuaternionT operator*(const QuaternionT &v) const;
Vector3 operator*(const Vector3 &v) const;
QuaternionT &operator*=(const QuaternionT &v);
QuaternionT operator/(const QuaternionT &v) const;
// angular difference between quaternions
QuaternionT angular_difference(const QuaternionT &v) const;
// absolute (e.g. always positive) earth-frame roll-pitch difference (in radians) between this Quaternion and another
T roll_pitch_difference(const QuaternionT &v) const;
// double/float conversion
QuaternionT todouble(void) const {
return QuaternionT(q1,q2,q3,q4);
}
QuaternionT tofloat(void) const {
return QuaternionT(q1,q2,q3,q4);
}
};
typedef QuaternionT Quaternion;
typedef QuaternionT QuaternionD;