#include #if CONFIG_HAL_BOARD == HAL_BOARD_SITL && !defined(HAL_BUILD_AP_PERIPH) #include "AP_HAL_SITL.h" #include "AP_HAL_SITL_Namespace.h" #include "HAL_SITL_Class.h" #include "UARTDriver.h" #include "Scheduler.h" #include "CANSocketIface.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern const AP_HAL::HAL& hal; using namespace HALSITL; void SITL_State::_set_param_default(const char *parm) { char *pdup = strdup(parm); char *p = strchr(pdup, '='); if (p == nullptr) { printf("Please specify parameter as NAME=VALUE"); exit(1); } float value = strtof(p+1, nullptr); *p = 0; enum ap_var_type var_type; AP_Param *vp = AP_Param::find(pdup, &var_type); if (vp == nullptr) { printf("Unknown parameter %s\n", pdup); exit(1); } if (var_type == AP_PARAM_FLOAT) { ((AP_Float *)vp)->set_and_save(value); } else if (var_type == AP_PARAM_INT32) { ((AP_Int32 *)vp)->set_and_save(value); } else if (var_type == AP_PARAM_INT16) { ((AP_Int16 *)vp)->set_and_save(value); } else if (var_type == AP_PARAM_INT8) { ((AP_Int8 *)vp)->set_and_save(value); } else { printf("Unable to set parameter %s\n", pdup); exit(1); } printf("Set parameter %s to %f\n", pdup, value); free(pdup); } /* setup for SITL handling */ void SITL_State::_sitl_setup() { #if !defined(__CYGWIN__) && !defined(__CYGWIN64__) _parent_pid = getppid(); #endif fprintf(stdout, "Starting SITL input\n"); // find the barometer object if it exists _sitl = AP::sitl(); if (_sitl != nullptr) { // setup some initial values _update_airspeed(0); #if AP_SIM_SOLOGIMBAL_ENABLED if (enable_gimbal) { gimbal = NEW_NOTHROW SITL::SoloGimbal(); } #endif sitl_model->set_buzzer(&_sitl->buzzer_sim); sitl_model->set_sprayer(&_sitl->sprayer_sim); sitl_model->set_gripper_servo(&_sitl->gripper_sim); sitl_model->set_gripper_epm(&_sitl->gripper_epm_sim); sitl_model->set_parachute(&_sitl->parachute_sim); sitl_model->set_precland(&_sitl->precland_sim); _sitl->i2c_sim.init(); sitl_model->set_i2c(&_sitl->i2c_sim); #if AP_TEST_DRONECAN_DRIVERS sitl_model->set_dronecan_device(&_sitl->dronecan_sim); #endif if (_use_fg_view) { fg_socket.connect(_fg_address, _fg_view_port); } fprintf(stdout, "Using Irlock at port : %d\n", _irlock_port); _sitl->irlock_port = _irlock_port; _sitl->rcin_port = _rcin_port; } if (_synthetic_clock_mode) { // start with non-zero clock hal.scheduler->stop_clock(1); } } /* step the FDM by one time step */ void SITL_State::_fdm_input_step(void) { _fdm_input_local(); /* make sure we die if our parent dies */ if (kill(_parent_pid, 0) != 0) { exit(1); } if (_scheduler->interrupts_are_blocked() || _sitl == nullptr) { return; } _scheduler->sitl_begin_atomic(); if (_update_count == 0 && _sitl != nullptr) { HALSITL::Scheduler::timer_event(); _scheduler->sitl_end_atomic(); return; } if (_sitl != nullptr) { _update_airspeed(_sitl->state.airspeed); _update_rangefinder(); } // trigger all APM timers. HALSITL::Scheduler::timer_event(); _scheduler->sitl_end_atomic(); } void SITL_State::wait_clock(uint64_t wait_time_usec) { float speedup = sitl_model->get_speedup(); if (speedup < 1) { // for purposes of sleeps treat low speedups as 1 speedup = 1.0; } while (AP_HAL::micros64() < wait_time_usec) { if (hal.scheduler->in_main_thread() || Scheduler::from(hal.scheduler)->semaphore_wait_hack_required()) { _fdm_input_step(); } else { #ifdef CYGWIN_BUILD if (speedup > 2 && hal.util->get_soft_armed()) { const char *current_thread = Scheduler::from(hal.scheduler)->get_current_thread_name(); if (current_thread && strcmp(current_thread, "Scripting") == 0) { // this effectively does a yield of the CPU. The // granularity of sleeps on cygwin is very high, // so this is needed for good thread performance // in scripting. We don't do this at low speedups // as it causes the cpu to run hot // We also don't do it while disarmed, as lua performance is less // critical while disarmed usleep(0); continue; } } #endif usleep(1000); } } // check the outbound TCP queue size. If it is too long then // MAVProxy/pymavlink take too long to process packets and it ends // up seeing traffic well into our past and hits time-out // conditions. if (speedup > 1 && hal.scheduler->in_main_thread()) { while (true) { HALSITL::UARTDriver *uart = (HALSITL::UARTDriver*)hal.serial(0); const int queue_length = uart->get_system_outqueue_length(); // ::fprintf(stderr, "queue_length=%d\n", (signed)queue_length); if (queue_length < 1024) { break; } _serial_0_outqueue_full_count++; uart->handle_reading_from_device_to_readbuffer(); usleep(1000); } } } /* output current state to flightgear */ void SITL_State::_output_to_flightgear(void) { SITL::FGNetFDM fdm {}; const SITL::sitl_fdm &sfdm = _sitl->state; fdm.version = 0x18; fdm.padding = 0; fdm.longitude = DEG_TO_RAD_DOUBLE*sfdm.longitude; fdm.latitude = DEG_TO_RAD_DOUBLE*sfdm.latitude; fdm.altitude = sfdm.altitude; fdm.agl = sfdm.altitude; fdm.phi = radians(sfdm.rollDeg); fdm.theta = radians(sfdm.pitchDeg); fdm.psi = radians(sfdm.yawDeg); fdm.vcas = sfdm.velocity_air_bf.length()/0.3048; if (_vehicle == ArduCopter) { fdm.num_engines = 4; for (uint8_t i=0; i<4; i++) { fdm.rpm[i] = constrain_float((pwm_output[i]-1000), 0, 1000); } } else { fdm.num_engines = 4; fdm.rpm[0] = constrain_float((pwm_output[2]-1000)*3, 0, 3000); // for quadplane fdm.rpm[1] = constrain_float((pwm_output[5]-1000)*12, 0, 12000); fdm.rpm[2] = constrain_float((pwm_output[6]-1000)*12, 0, 12000); fdm.rpm[3] = constrain_float((pwm_output[7]-1000)*12, 0, 12000); } fdm.ByteSwap(); fg_socket.send(&fdm, sizeof(fdm)); } /* get FDM input from a local model */ void SITL_State::_fdm_input_local(void) { if (_sitl == nullptr) { return; } struct sitl_input input; // construct servos structure for FDM _simulator_servos(input); #if HAL_SIM_JSON_MASTER_ENABLED // read servo inputs from ride along flight controllers ride_along.receive(input); #endif // replace outputs from multicast multicast_servo_update(input); // update the model sitl_model->update_home(); sitl_model->update_model(input); // get FDM output from the model sitl_model->fill_fdm(_sitl->state); #if HAL_NUM_CAN_IFACES if (CANIface::num_interfaces() > 0) { multicast_state_send(); } #endif #if HAL_SIM_JSON_MASTER_ENABLED // output JSON state to ride along flight controllers ride_along.send(_sitl->state,sitl_model->get_position_relhome()); #endif sim_update(); if (_use_fg_view) { _output_to_flightgear(); } // update simulation time hal.scheduler->stop_clock(_sitl->state.timestamp_us); set_height_agl(); _synthetic_clock_mode = true; _update_count++; } /* create sitl_input structure for sending to FDM */ void SITL_State::_simulator_servos(struct sitl_input &input) { if (_sitl == nullptr) { return; } static uint32_t last_update_usec; /* this maps the registers used for PWM outputs. The RC * driver updates these whenever it wants the channel output * to change */ if (last_update_usec == 0 || !output_ready) { for (uint8_t i=0; i 5000000 ) { // The EKF does not like step inputs so this LPF keeps it happy. uint32_t dt_us = now - last_wind_update_us; if (dt_us > 1000) { last_wind_update_us = now; // slew wind based on the configured time constant const float dt = dt_us * 1.0e-6; const float tc = MAX(_sitl->wind_change_tc, 0.1); const float alpha = calc_lowpass_alpha_dt(dt, 1.0/tc); _sitl->wind_speed_active += (_sitl->wind_speed - _sitl->wind_speed_active) * alpha; _sitl->wind_direction_active += (wrap_180(_sitl->wind_direction - _sitl->wind_direction_active)) * alpha; _sitl->wind_dir_z_active += (_sitl->wind_dir_z - _sitl->wind_dir_z_active) * alpha; _sitl->wind_direction_active = wrap_180(_sitl->wind_direction_active); } wind_speed = _sitl->wind_speed_active; wind_direction = _sitl->wind_direction_active; wind_dir_z = _sitl->wind_dir_z_active; // pass wind into simulators using different wind types via param SIM_WIND_T*. switch (_sitl->wind_type) { case SITL::SIM::WIND_TYPE_SQRT: if (altitude < _sitl->wind_type_alt) { wind_speed *= sqrtf(MAX(altitude / _sitl->wind_type_alt, 0)); } break; case SITL::SIM::WIND_TYPE_COEF: wind_speed += (altitude - _sitl->wind_type_alt) * _sitl->wind_type_coef; break; case SITL::SIM::WIND_TYPE_NO_LIMIT: default: break; } // never allow negative wind velocity wind_speed = MAX(wind_speed, 0); } input.wind.speed = wind_speed; input.wind.direction = wind_direction; input.wind.turbulence = _sitl?_sitl->wind_turbulance:0; input.wind.dir_z = wind_dir_z; for (uint8_t i=0; ifetteconewireesc_sim.enabled()) { _sitl->fetteconewireesc_sim.update_sitl_input_pwm(input); for (uint8_t i=0; iengine_mul.get():1; uint32_t engine_fail = _sitl?_sitl->engine_fail.get():0; float throttle = 0.0f; // apply engine multiplier to motor defined by the SIM_ENGINE_FAIL parameter for (uint8_t i=0; i(((input.servos[i] - 1500) * engine_mul) + 1500); } } } if (_vehicle == ArduPlane) { float forward_throttle = constrain_float((input.servos[2] - 1000) / 1000.0f, 0.0f, 1.0f); // do a little quadplane dance float hover_throttle = 0.0f; uint8_t running_motors = 0; uint32_t mask = _sitl->state.motor_mask; uint8_t bit; while ((bit = __builtin_ffs(mask)) != 0) { uint8_t motor = bit-1; mask &= ~(1U< 0) { hover_throttle /= running_motors; } if (!is_zero(forward_throttle)) { throttle = forward_throttle; } else { throttle = hover_throttle; } } else if (_vehicle == Rover) { input.servos[2] = static_cast(constrain_int16(input.servos[2], 1000, 2000)); input.servos[0] = static_cast(constrain_int16(input.servos[0], 1000, 2000)); throttle = fabsf((input.servos[2] - 1500) / 500.0f); } else { // run checks on each motor uint8_t running_motors = 0; uint32_t mask = _sitl->state.motor_mask; uint8_t bit; while ((bit = __builtin_ffs(mask)) != 0) { const uint8_t motor = bit-1; mask &= ~(1U< 0) { throttle /= running_motors; } } if (_sitl) { _sitl->throttle = throttle; } update_voltage_current(input, throttle); } void SITL_State::init(int argc, char * const argv[]) { _scheduler = Scheduler::from(hal.scheduler); _parse_command_line(argc, argv); } /* set height above the ground in meters */ void SITL_State::set_height_agl(void) { static float home_alt = -1; if (!_sitl) { // in example program return; } if (is_equal(home_alt, -1.0f) && _sitl->state.altitude > 0) { // remember home altitude as first non-zero altitude home_alt = _sitl->state.altitude; } #if AP_TERRAIN_AVAILABLE if (_sitl != nullptr && _sitl->terrain_enable) { // get height above terrain from AP_Terrain. This assumes // AP_Terrain is working float terrain_height_amsl; Location location; location.lat = _sitl->state.latitude*1.0e7; location.lng = _sitl->state.longitude*1.0e7; AP_Terrain *_terrain = AP_Terrain::get_singleton(); if (_terrain != nullptr && _terrain->height_amsl(location, terrain_height_amsl, false)) { _sitl->state.height_agl = _sitl->state.altitude - terrain_height_amsl; return; } } #endif if (_sitl != nullptr) { // fall back to flat earth model _sitl->state.height_agl = _sitl->state.altitude - home_alt; } } /* open multicast UDP */ void SITL_State::multicast_state_open(void) { struct sockaddr_in sockaddr {}; int ret; #ifdef HAVE_SOCK_SIN_LEN sockaddr.sin_len = sizeof(sockaddr); #endif sockaddr.sin_port = htons(SITL_MCAST_PORT); sockaddr.sin_family = AF_INET; sockaddr.sin_addr.s_addr = inet_addr(SITL_MCAST_IP); mc_out_fd = socket(AF_INET, SOCK_DGRAM, 0); if (mc_out_fd == -1) { fprintf(stderr, "socket failed - %s\n", strerror(errno)); exit(1); } ret = fcntl(mc_out_fd, F_SETFD, FD_CLOEXEC); if (ret == -1) { fprintf(stderr, "fcntl failed on setting FD_CLOEXEC - %s\n", strerror(errno)); exit(1); } // try to setup for broadcast, this may fail if insufficient privileges int one = 1; setsockopt(mc_out_fd,SOL_SOCKET,SO_BROADCAST,(char *)&one,sizeof(one)); ret = connect(mc_out_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); if (ret == -1) { fprintf(stderr, "udp connect failed on port %u - %s\n", (unsigned)ntohs(sockaddr.sin_port), strerror(errno)); exit(1); } /* open servo input socket */ servo_in_fd = socket(AF_INET, SOCK_DGRAM, 0); if (servo_in_fd == -1) { fprintf(stderr, "socket failed - %s\n", strerror(errno)); exit(1); } ret = fcntl(servo_in_fd, F_SETFD, FD_CLOEXEC); if (ret == -1) { fprintf(stderr, "fcntl failed on setting FD_CLOEXEC - %s\n", strerror(errno)); exit(1); } sockaddr.sin_addr.s_addr = htonl(INADDR_ANY); sockaddr.sin_port = htons(SITL_SERVO_PORT + _instance); ret = bind(servo_in_fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)); if (ret == -1) { fprintf(stderr, "udp servo connect failed\n"); exit(1); } ::printf("multicast initialised\n"); } /* send out SITL state as multicast UDP */ void SITL_State::multicast_state_send(void) { if (_sitl == nullptr) { return; } if (mc_out_fd == -1) { multicast_state_open(); } const auto &sfdm = _sitl->state; send(mc_out_fd, (void*)&sfdm, sizeof(sfdm), 0); check_servo_input(); } /* check for servo data from peripheral */ void SITL_State::check_servo_input(void) { // drain any pending packets float mc_servo_float[SITL_NUM_CHANNELS]; // we loop to ensure we drain all packets from all nodes while (recv(servo_in_fd, (void*)mc_servo_float, sizeof(mc_servo_float), MSG_DONTWAIT) == sizeof(mc_servo_float)) { for (uint8_t i=0; ican_servo_mask.get()); if (can_mask & mask) { input.servos[i] = mc_servo[i]; } } } #endif