/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // // MAVLINK GPS driver // #include "AP_GPS_config.h" #if AP_GPS_MAV_ENABLED #include "AP_GPS_MAV.h" #include // Reading does nothing in this class; we simply return whether or not // the latest reading has been consumed. By calling this function we assume // the caller is consuming the new data; bool AP_GPS_MAV::read(void) { if (_new_data) { _new_data = false; return true; } return false; } // handles an incoming mavlink message (HIL_GPS) and sets // corresponding gps data appropriately; void AP_GPS_MAV::handle_msg(const mavlink_message_t &msg) { switch (msg.msgid) { case MAVLINK_MSG_ID_GPS_INPUT: { mavlink_gps_input_t packet; mavlink_msg_gps_input_decode(&msg, &packet); // check if target instance belongs to incoming gps data. if (state.instance != packet.gps_id) { return; } bool have_alt = ((packet.ignore_flags & GPS_INPUT_IGNORE_FLAG_ALT) == 0); bool have_hdop = ((packet.ignore_flags & GPS_INPUT_IGNORE_FLAG_HDOP) == 0); bool have_vdop = ((packet.ignore_flags & GPS_INPUT_IGNORE_FLAG_VDOP) == 0); bool have_vel_h = ((packet.ignore_flags & GPS_INPUT_IGNORE_FLAG_VEL_HORIZ) == 0); bool have_vel_v = ((packet.ignore_flags & GPS_INPUT_IGNORE_FLAG_VEL_VERT) == 0); bool have_sa = ((packet.ignore_flags & GPS_INPUT_IGNORE_FLAG_SPEED_ACCURACY) == 0); bool have_ha = ((packet.ignore_flags & GPS_INPUT_IGNORE_FLAG_HORIZONTAL_ACCURACY) == 0); bool have_va = ((packet.ignore_flags & GPS_INPUT_IGNORE_FLAG_VERTICAL_ACCURACY) == 0); bool have_yaw = (packet.yaw != 0); state.time_week = packet.time_week; state.time_week_ms = packet.time_week_ms; state.status = (AP_GPS::GPS_Status)packet.fix_type; Location loc = {}; loc.lat = packet.lat; loc.lng = packet.lon; if (have_alt) { loc.alt = packet.alt * 100; // convert to centimeters } state.location = loc; if (have_hdop) { state.hdop = packet.hdop * 100; // convert to centimeters } if (have_vdop) { state.vdop = packet.vdop * 100; // convert to centimeters } if (have_vel_h) { Vector3f vel(packet.vn, packet.ve, 0); if (have_vel_v) { vel.z = packet.vd; state.have_vertical_velocity = true; } state.velocity = vel; velocity_to_speed_course(state); } if (have_sa) { state.speed_accuracy = packet.speed_accuracy; state.have_speed_accuracy = true; } if (have_ha) { state.horizontal_accuracy = packet.horiz_accuracy; state.have_horizontal_accuracy = true; } if (have_va) { state.vertical_accuracy = packet.vert_accuracy; state.have_vertical_accuracy = true; } const uint32_t now_ms = AP_HAL::millis(); if (have_yaw) { state.gps_yaw = wrap_360(packet.yaw*0.01); state.gps_yaw_time_ms = now_ms; state.have_gps_yaw = true; state.gps_yaw_configured = true; } if (packet.fix_type >= 3 && packet.time_week > 0) { /* use the millisecond timestamp from the GPS_INPUT packet into jitter correction to get a local timestamp corrected for transport jitter */ if (first_week == 0) { first_week = packet.time_week; } uint32_t timestamp_ms = (packet.time_week - first_week) * AP_MSEC_PER_WEEK + packet.time_week_ms; uint32_t corrected_ms = jitter.correct_offboard_timestamp_msec(timestamp_ms, now_ms); state.last_corrected_gps_time_us = (corrected_ms * 1000ULL); state.corrected_timestamp_updated = true; if (state.last_corrected_gps_time_us) { _last_itow_ms = state.time_week_ms; _have_itow = true; } if (have_yaw) { state.gps_yaw_time_ms = corrected_ms; } } state.num_sats = packet.satellites_visible; state.last_gps_time_ms = now_ms; _new_data = true; break; } default: // ignore all other messages break; } } #endif