/* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "AP_Baro_KellerLD.h" #if AP_BARO_KELLERLD_ENABLED #include #include #include #define KELLER_DEBUG 0 #if KELLER_DEBUG # define Debug(fmt, args ...) do {printf(fmt "\n", ## args);} while(0) #else # define Debug(fmt, args ...) #endif extern const AP_HAL::HAL &hal; // sensor metadata register static const uint8_t CMD_METADATA_PMODE = 0x12; // Measurement range registers static const uint8_t CMD_PRANGE_MIN_MSB = 0x13; static const uint8_t CMD_PRANGE_MIN_LSB = 0x14; static const uint8_t CMD_PRANGE_MAX_MSB = 0x15; static const uint8_t CMD_PRANGE_MAX_LSB = 0x16; // write to this address to start pressure measurement static const uint8_t CMD_REQUEST_MEASUREMENT = 0xAC; AP_Baro_KellerLD::AP_Baro_KellerLD(AP_Baro &baro, AP_HAL::OwnPtr dev) : AP_Baro_Backend(baro) , _dev(std::move(dev)) { } // Look for the device on the bus and see if it responds appropriately AP_Baro_Backend *AP_Baro_KellerLD::probe(AP_Baro &baro, AP_HAL::OwnPtr dev) { if (!dev) { return nullptr; } AP_Baro_KellerLD *sensor = NEW_NOTHROW AP_Baro_KellerLD(baro, std::move(dev)); if (!sensor || !sensor->_init()) { delete sensor; return nullptr; } return sensor; } // convenience function to work around device transfer oddities bool AP_Baro_KellerLD::transfer_with_delays(uint8_t *send, uint8_t sendlen, uint8_t *recv, uint8_t recvlen) { if (!_dev->transfer(send, sendlen, nullptr, 0)) { return false; } hal.scheduler->delay(1); if(!_dev->transfer(nullptr, 0, recv, recvlen)) { return false; } hal.scheduler->delay(1); return true; } // This device has some undocumented finicky quirks and requires // delays when reading out the measurement range, but for some reason // this isn't an issue when requesting measurements. This is why we // need to split the transfers with delays like this. (Using // AP_HAL::I2CDevice::set_split_transfers will not work with these // sensors) bool AP_Baro_KellerLD::read_measurement_limit(float *limit, uint8_t msb_addr, uint8_t lsb_addr) { uint8_t data[3]; if (!transfer_with_delays(&msb_addr, 1, data, ARRAY_SIZE(data))) { return false; } const uint16_t ms_word = (data[1] << 8) | data[2]; Debug("0x%02x: %d [%d, %d, %d]", msb_addr, ms_word, data[0], data[1], data[2]); if (!transfer_with_delays(&lsb_addr, 1, data, ARRAY_SIZE(data))) { return false; } const uint16_t ls_word = (data[1] << 8) | data[2]; Debug("0x%02x: %d [%d, %d, %d]", lsb_addr, ls_word, data[0], data[1], data[2]); const uint32_t cal_data = (ms_word << 16) | ls_word; memcpy(limit, &cal_data, sizeof(*limit)); if (isinf(*limit) || isnan(*limit)) { return false; } Debug("data: %d, float: %.2f", cal_data, _p_min); return true; } bool AP_Baro_KellerLD::read_cal() { // Read out pressure measurement range if (!read_measurement_limit(&_p_min, CMD_PRANGE_MIN_MSB, CMD_PRANGE_MIN_LSB)) { return false; } if (!read_measurement_limit(&_p_max, CMD_PRANGE_MAX_MSB, CMD_PRANGE_MAX_LSB)) { return false; } if (_p_max <= _p_min) { return false; } return true; } // Read sensor P-Mode type and set pressure reference offset // This determines the pressure offset based on the type of sensor // vented to atmosphere, gauged to vacuum, or gauged to standard sea-level pressure bool AP_Baro_KellerLD::read_mode_type() { uint8_t cmd = CMD_METADATA_PMODE; uint8_t data[3]; if (!transfer_with_delays(&cmd, 1, data, ARRAY_SIZE(data))) { return false; } // Byte 3, Bit 0 & 1: Represents P-Mode // "Communication Protocol 4 LD…9 LD", Version 2.6 pg 12 of 25 // https://keller-druck.com/?d=VeMYAQBxgoSNjUSHbdnBTU _p_mode = (SensorMode)(data[2] & 0b11); // update pressure offset based on P-Mode switch (_p_mode) { case SensorMode::PR_MODE: // PR-Mode vented gauge sensor // pressure reads zero when the pressure outside is equal to the pressure inside the enclosure _p_mode_offset = _frontend.get_pressure(0); break; case SensorMode::PA_MODE: // PA-Mode sealed gauge sensor // pressure reads zero when the pressure outside is equal to 1.0 bar // i.e., the pressure at which the vent is sealed _p_mode_offset = 1.0; break; case SensorMode::PAA_MODE: // PAA-mode Absolute sensor (zero at vacuum) _p_mode_offset = 0.0; break; case SensorMode::UNDEFINED: // we should give an error here printf("KellerLD Device Mode UNDEFINED\n"); return false; } return true; } // We read out the measurement range to be used in raw value conversions bool AP_Baro_KellerLD::_init() { if (!_dev) { return false; } WITH_SEMAPHORE(_dev->get_semaphore()); // high retries for init _dev->set_retries(10); if (!read_cal()) { printf("Cal read bad!\n"); return false; } if (!read_mode_type()) { printf("Mode_Type read bad!\n"); return false; } printf("Keller LD found on bus %u address 0x%02x\n", _dev->bus_num(), _dev->get_bus_address()); // Send a command to take a measurement _dev->transfer(&CMD_REQUEST_MEASUREMENT, 1, nullptr, 0); memset(&_accum, 0, sizeof(_accum)); _instance = _frontend.register_sensor(); _dev->set_device_type(DEVTYPE_BARO_KELLERLD); set_bus_id(_instance, _dev->get_bus_id()); _frontend.set_type(_instance, AP_Baro::BARO_TYPE_WATER); // lower retries for run _dev->set_retries(3); // The sensor needs time to take a deep breath after reading out the calibration... hal.scheduler->delay(150); // Request 50Hz update // The sensor really struggles with any jitter in timing at 100Hz, and will sometimes start reading out all zeros _dev->register_periodic_callback(20 * AP_USEC_PER_MSEC, FUNCTOR_BIND_MEMBER(&AP_Baro_KellerLD::_timer, void)); return true; } // Read out most recent measurement from sensor hw bool AP_Baro_KellerLD::_read() { uint8_t data[5]; if (!_dev->transfer(nullptr, 0, data, sizeof(data))) { Debug("Keller LD read failed!"); return false; } //uint8_t status = data[0]; uint16_t pressure_raw = (data[1] << 8) | data[2]; uint16_t temperature_raw = (data[3] << 8) | data[4]; #if KELLER_DEBUG static uint8_t samples = 0; if (samples < 3) { samples++; Debug("data: [%d, %d, %d, %d, %d]", data[0], data[1], data[2], data[3], data[4]); Debug("pressure_raw: %d\ttemperature_raw: %d", pressure_raw, temperature_raw); } #endif if (pressure_raw == 0 || temperature_raw == 0) { Debug("Keller: bad read"); return false; } if (!pressure_ok(pressure_raw)) { return false; } WITH_SEMAPHORE(_sem); _update_and_wrap_accumulator(pressure_raw, temperature_raw, 128); return true; } // Periodic callback, regular update at 50Hz // Read out most recent measurement, and request another // Max conversion time according to datasheet is ~8ms, so // max update rate is ~125Hz, yet we struggle to get consistent // performance/data at 100Hz void AP_Baro_KellerLD::_timer(void) { _read(); _dev->transfer(&CMD_REQUEST_MEASUREMENT, 1, nullptr, 0); } // Accumulate a reading, shrink if necessary to prevent overflow void AP_Baro_KellerLD::_update_and_wrap_accumulator(uint16_t pressure, uint16_t temperature, uint8_t max_count) { _accum.sum_pressure += pressure; _accum.sum_temperature += temperature; _accum.num_samples += 1; if (_accum.num_samples == max_count) { _accum.sum_pressure /= 2; _accum.sum_temperature /= 2; _accum.num_samples /= 2; } } // Take the average of accumulated values and push to frontend void AP_Baro_KellerLD::update() { float sum_pressure, sum_temperature; float num_samples; // update _p_mode_offset if vented guage if (_p_mode == SensorMode::PR_MODE) { // we need to get the pressure from on-board barometer _p_mode_offset = _frontend.get_pressure(0); } { WITH_SEMAPHORE(_sem); if (_accum.num_samples == 0) { return; } sum_pressure = _accum.sum_pressure; sum_temperature = _accum.sum_temperature; num_samples = _accum.num_samples; memset(&_accum, 0, sizeof(_accum)); } uint16_t raw_pressure_avg = sum_pressure / num_samples; uint16_t raw_temperature_avg = sum_temperature / num_samples; // per datasheet float pressure = (raw_pressure_avg - 16384) * (_p_max - _p_min) / 32768 + _p_min + _p_mode_offset; pressure *= 100000; // bar -> Pascal float temperature = ((raw_temperature_avg >> 4) - 24) * 0.05f - 50; _copy_to_frontend(_instance, pressure, temperature); } #endif // AP_BARO_KELLERLD_ENABLED