#pragma once /// @file AC_AttitudeControl.h /// @brief ArduCopter attitude control library #include #include #include #include #include #include #include #include #include #define AC_ATTITUDE_CONTROL_ANGLE_P 4.5f // default angle P gain for roll, pitch and yaw #define AC_ATTITUDE_ACCEL_RP_CONTROLLER_MIN_RADSS radians(40.0f) // minimum body-frame acceleration limit for the stability controller (for roll and pitch axis) #define AC_ATTITUDE_ACCEL_RP_CONTROLLER_MAX_RADSS radians(720.0f) // maximum body-frame acceleration limit for the stability controller (for roll and pitch axis) #define AC_ATTITUDE_ACCEL_Y_CONTROLLER_MIN_RADSS radians(10.0f) // minimum body-frame acceleration limit for the stability controller (for yaw axis) #define AC_ATTITUDE_ACCEL_Y_CONTROLLER_MAX_RADSS radians(120.0f) // maximum body-frame acceleration limit for the stability controller (for yaw axis) #define AC_ATTITUDE_CONTROL_SLEW_YAW_DEFAULT_CDS 6000 // constraint on yaw angle error in degrees. This should lead to maximum turn rate of 10deg/sec * Stab Rate P so by default will be 45deg/sec. #define AC_ATTITUDE_CONTROL_ACCEL_RP_MAX_DEFAULT_CDSS 110000.0f // default maximum acceleration for roll/pitch axis in centidegrees/sec/sec #define AC_ATTITUDE_CONTROL_ACCEL_Y_MAX_DEFAULT_CDSS 27000.0f // default maximum acceleration for yaw axis in centidegrees/sec/sec #define AC_ATTITUDE_RATE_RP_CONTROLLER_OUT_MAX 1.0f // body-frame rate controller maximum output (for roll-pitch axis) #define AC_ATTITUDE_RATE_YAW_CONTROLLER_OUT_MAX 1.0f // body-frame rate controller maximum output (for yaw axis) #define AC_ATTITUDE_RATE_RELAX_TC 0.16f // This is used to decay the rate I term to 5% in half a second. #define AC_ATTITUDE_THRUST_ERROR_ANGLE radians(30.0f) // Thrust angle error above which yaw corrections are limited #define AC_ATTITUDE_YAW_MAX_ERROR_ANGLE radians(45.0f) // Thrust angle error above which yaw corrections are limited #define AC_ATTITUDE_CONTROL_RATE_BF_FF_DEFAULT 1 // body-frame rate feedforward enabled by default #define AC_ATTITUDE_CONTROL_ANGLE_LIMIT_TC_DEFAULT 1.0f // Time constant used to limit lean angle so that vehicle does not lose altitude #define AC_ATTITUDE_CONTROL_ANGLE_LIMIT_THROTTLE_MAX 0.8f // Max throttle used to limit lean angle so that vehicle does not lose altitude #define AC_ATTITUDE_CONTROL_MIN_DEFAULT 0.1f // minimum throttle mix default #define AC_ATTITUDE_CONTROL_MAN_DEFAULT 0.1f // manual throttle mix default #define AC_ATTITUDE_CONTROL_MAX_DEFAULT 0.5f // maximum throttle mix default #define AC_ATTITUDE_CONTROL_MIN_LIMIT 0.5f // min throttle mix upper limit #define AC_ATTITUDE_CONTROL_MAN_LIMIT 4.0f // man throttle mix upper limit #define AC_ATTITUDE_CONTROL_MAX 5.0f // maximum throttle mix default #define AC_ATTITUDE_CONTROL_THR_MIX_DEFAULT 0.5f // ratio controlling the max throttle output during competing requests of low throttle from the pilot (or autopilot) and higher throttle for attitude control. Higher favours Attitude over pilot input #define AC_ATTITUDE_CONTROL_THR_G_BOOST_THRESH 1.0f // default angle-p/pd throttle boost threshold class AC_AttitudeControl { public: AC_AttitudeControl( AP_AHRS_View &ahrs, const AP_MultiCopter &aparm, AP_Motors& motors) : _p_angle_roll(AC_ATTITUDE_CONTROL_ANGLE_P), _p_angle_pitch(AC_ATTITUDE_CONTROL_ANGLE_P), _p_angle_yaw(AC_ATTITUDE_CONTROL_ANGLE_P), _angle_boost(0), _use_sqrt_controller(true), _throttle_rpy_mix_desired(AC_ATTITUDE_CONTROL_THR_MIX_DEFAULT), _throttle_rpy_mix(AC_ATTITUDE_CONTROL_THR_MIX_DEFAULT), _ahrs(ahrs), _aparm(aparm), _motors(motors) { _singleton = this; AP_Param::setup_object_defaults(this, var_info); } static AC_AttitudeControl *get_singleton(void) { return _singleton; } // Empty destructor to suppress compiler warning virtual ~AC_AttitudeControl() {} // set_dt / get_dt - dt is the time since the last time the attitude controllers were updated // _dt should be set based on the time of the last IMU read used by these controllers // the attitude controller should run updates for active controllers on each loop to ensure normal operation void set_dt(float dt) { _dt = dt; } float get_dt() const { return _dt; } // pid accessors AC_P& get_angle_roll_p() { return _p_angle_roll; } AC_P& get_angle_pitch_p() { return _p_angle_pitch; } AC_P& get_angle_yaw_p() { return _p_angle_yaw; } virtual AC_PID& get_rate_roll_pid() = 0; virtual AC_PID& get_rate_pitch_pid() = 0; virtual AC_PID& get_rate_yaw_pid() = 0; virtual const AC_PID& get_rate_roll_pid() const = 0; virtual const AC_PID& get_rate_pitch_pid() const = 0; virtual const AC_PID& get_rate_yaw_pid() const = 0; // get the roll acceleration limit in centidegrees/s/s or radians/s/s float get_accel_roll_max_cdss() const { return _accel_roll_max; } float get_accel_roll_max_radss() const { return radians(_accel_roll_max * 0.01f); } // Sets the roll acceleration limit in centidegrees/s/s void set_accel_roll_max_cdss(float accel_roll_max) { _accel_roll_max.set(accel_roll_max); } // Sets and saves the roll acceleration limit in centidegrees/s/s void save_accel_roll_max_cdss(float accel_roll_max) { _accel_roll_max.set_and_save(accel_roll_max); } // get the pitch acceleration limit in centidegrees/s/s or radians/s/s float get_accel_pitch_max_cdss() const { return _accel_pitch_max; } float get_accel_pitch_max_radss() const { return radians(_accel_pitch_max * 0.01f); } // Sets the pitch acceleration limit in centidegrees/s/s void set_accel_pitch_max_cdss(float accel_pitch_max) { _accel_pitch_max.set(accel_pitch_max); } // Sets and saves the pitch acceleration limit in centidegrees/s/s void save_accel_pitch_max_cdss(float accel_pitch_max) { _accel_pitch_max.set_and_save(accel_pitch_max); } // get the yaw acceleration limit in centidegrees/s/s or radians/s/s float get_accel_yaw_max_cdss() const { return _accel_yaw_max; } float get_accel_yaw_max_radss() const { return radians(_accel_yaw_max * 0.01f); } // Sets the yaw acceleration limit in centidegrees/s/s void set_accel_yaw_max_cdss(float accel_yaw_max) { _accel_yaw_max.set(accel_yaw_max); } // Sets and saves the yaw acceleration limit in centidegrees/s/s void save_accel_yaw_max_cdss(float accel_yaw_max) { _accel_yaw_max.set_and_save(accel_yaw_max); } // get the roll angular velocity limit in radians/s float get_ang_vel_roll_max_rads() const { return radians(_ang_vel_roll_max); } // get the roll angular velocity limit in degrees/s float get_ang_vel_roll_max_degs() const { return _ang_vel_roll_max; } // set the roll angular velocity limit in degrees/s void set_ang_vel_roll_max_degs(float vel_roll_max) { _ang_vel_roll_max.set(vel_roll_max); } // get the pitch angular velocity limit in radians/s float get_ang_vel_pitch_max_rads() const { return radians(_ang_vel_pitch_max); } // get the pitch angular velocity limit in degrees/s float get_ang_vel_pitch_max_degs() const { return _ang_vel_pitch_max; } // set the pitch angular velocity limit in degrees/s void set_ang_vel_pitch_max_degs(float vel_pitch_max) { _ang_vel_pitch_max.set(vel_pitch_max); } // get the yaw angular velocity limit in radians/s float get_ang_vel_yaw_max_rads() const { return radians(_ang_vel_yaw_max); } // get the yaw angular velocity limit in degrees/s float get_ang_vel_yaw_max_degs() const { return _ang_vel_yaw_max; } // set the yaw angular velocity limit in degrees/s void set_ang_vel_yaw_max_degs(float vel_yaw_max) { _ang_vel_yaw_max.set(vel_yaw_max); } // get the slew yaw rate limit in deg/s float get_slew_yaw_max_degs() const; // get the rate control input smoothing time constant float get_input_tc() const { return _input_tc; } // set the rate control input smoothing time constant void set_input_tc(float input_tc) { _input_tc.set(constrain_float(input_tc, 0.0f, 1.0f)); } // rate loop visible functions // Ensure attitude controller have zero errors to relax rate controller output void relax_attitude_controllers(); // Used by child class AC_AttitudeControl_TS to change behaviour for tailsitter quadplanes virtual void relax_attitude_controllers(bool exclude_pitch) { relax_attitude_controllers(); } // reset rate controller I terms void reset_rate_controller_I_terms(); // reset rate controller I terms smoothly to zero in 0.5 seconds void reset_rate_controller_I_terms_smoothly(); // Reduce attitude control gains while landed to stop ground resonance void landed_gain_reduction(bool landed); // Sets attitude target to vehicle attitude and sets all rates to zero // If reset_rate is false rates are not reset to allow the rate controllers to run void reset_target_and_rate(bool reset_rate = true); // Sets yaw target to vehicle heading and sets yaw rate to zero // If reset_rate is false rates are not reset to allow the rate controllers to run void reset_yaw_target_and_rate(bool reset_rate = true); // handle reset of attitude from EKF since the last iteration void inertial_frame_reset(); // Command euler yaw rate and pitch angle with roll angle specified in body frame // (implemented only in AC_AttitudeControl_TS for tailsitter quadplanes) virtual void input_euler_rate_yaw_euler_angle_pitch_bf_roll(bool plane_controls, float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds) {} ////// begin rate update functions ////// // These functions all update _ang_vel_body which is used as the rate target by the rate controller. // Since _ang_vel_body can be seen by the rate controller thread all these functions only set it // at the end once all of the calculations have been performed. This avoids intermediate results being // used by the rate controller when running concurrently. _ang_vel_body is accessed so commonly that // locking proves to be moderately expensive, however since this is changing incrementally values combining // previous and current elements are safe and do not have an impact on control. // Any additional functions that are added to manipulate _ang_vel_body should follow this pattern. // Calculates the body frame angular velocities to follow the target attitude // This is used by most of the subsequent functions void attitude_controller_run_quat(); // Command a Quaternion attitude with feedforward and smoothing // attitude_desired_quat: is updated on each time_step (_dt) by the integral of the body frame angular velocity virtual void input_quaternion(Quaternion& attitude_desired_quat, Vector3f ang_vel_body); // Command an euler roll and pitch angle and an euler yaw rate with angular velocity feedforward and smoothing virtual void input_euler_angle_roll_pitch_euler_rate_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_rate_cds); // Command an euler roll, pitch and yaw angle with angular velocity feedforward and smoothing virtual void input_euler_angle_roll_pitch_yaw(float euler_roll_angle_cd, float euler_pitch_angle_cd, float euler_yaw_angle_cd, bool slew_yaw); // Command an euler roll, pitch, and yaw rate with angular velocity feedforward and smoothing virtual void input_euler_rate_roll_pitch_yaw(float euler_roll_rate_cds, float euler_pitch_rate_cds, float euler_yaw_rate_cds); // Fully stabilized acro // Command an angular velocity with angular velocity feedforward and smoothing virtual void input_rate_bf_roll_pitch_yaw(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds); // Rate-only acro with no attitude feedback - used only by Copter rate-only acro // Command an angular velocity with angular velocity smoothing using rate loops only with no attitude loop stabilization virtual void input_rate_bf_roll_pitch_yaw_2(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds); // Acro with attitude feedback that does not rely on attitude - used only by Plane acro // Command an angular velocity with angular velocity smoothing using rate loops only with integrated rate error stabilization virtual void input_rate_bf_roll_pitch_yaw_3(float roll_rate_bf_cds, float pitch_rate_bf_cds, float yaw_rate_bf_cds); // Command an angular step (i.e change) in body frame angle virtual void input_angle_step_bf_roll_pitch_yaw(float roll_angle_step_bf_cd, float pitch_angle_step_bf_cd, float yaw_angle_step_bf_cd); // Command an angular rate step (i.e change) in body frame rate virtual void input_rate_step_bf_roll_pitch_yaw(float roll_rate_step_bf_cd, float pitch_rate_step_bf_cd, float yaw_rate_step_bf_cd); // Command a thrust vector in the earth frame and a heading angle and/or rate virtual void input_thrust_vector_rate_heading(const Vector3f& thrust_vector, float heading_rate_cds, bool slew_yaw = true); virtual void input_thrust_vector_heading(const Vector3f& thrust_vector, float heading_angle_cd, float heading_rate_cds); void input_thrust_vector_heading(const Vector3f& thrust_vector, float heading_cd) {input_thrust_vector_heading(thrust_vector, heading_cd, 0.0f);} ////// end rate update functions ////// // Converts thrust vector and heading angle to quaternion rotation in the earth frame Quaternion attitude_from_thrust_vector(Vector3f thrust_vector, float heading_angle) const; // Run angular velocity controller and send outputs to the motors virtual void rate_controller_run() = 0; // reset target loop rate modifications virtual void rate_controller_target_reset() {} // optional variant to allow running with different dt virtual void rate_controller_run_dt(const Vector3f& gyro, float dt) { AP_BoardConfig::config_error("rate_controller_run_dt() must be defined"); }; // Convert a 321-intrinsic euler angle derivative to an angular velocity vector void euler_rate_to_ang_vel(const Quaternion& att, const Vector3f& euler_rate_rads, Vector3f& ang_vel_rads); // Convert an angular velocity vector to a 321-intrinsic euler angle derivative // Returns false if the vehicle is pitched 90 degrees up or down bool ang_vel_to_euler_rate(const Quaternion& att, const Vector3f& ang_vel_rads, Vector3f& euler_rate_rads); // Specifies whether the attitude controller should use the square root controller in the attitude correction. // This is used during Autotune to ensure the P term is tuned without being influenced by the acceleration limit of the square root controller. void use_sqrt_controller(bool use_sqrt_cont) { _use_sqrt_controller = use_sqrt_cont; } // Return 321-intrinsic euler angles in centidegrees representing the rotation from NED earth frame to the // attitude controller's target attitude. // **NOTE** Using vector3f*deg(100) is more efficient than deg(vector3f)*100 or deg(vector3d*100) because it gives the // same result with the fewest multiplications. Even though it may look like a bug, it is intentional. See issue 4895. Vector3f get_att_target_euler_cd() const { return _euler_angle_target * degrees(100.0f); } const Vector3f & get_att_target_euler_rad() const { return _euler_angle_target; } // Return the body-to-NED target attitude used by the quadplane-specific attitude control input methods Quaternion get_attitude_target_quat() const { return _attitude_target; } // Return the angular velocity of the target (setpoint) [rad/s] in the target attitude frame const Vector3f& get_attitude_target_ang_vel() const { return _ang_vel_target;} // Return the angle between the target thrust vector and the current thrust vector. float get_att_error_angle_deg() const { return degrees(_thrust_error_angle); } // Set z-axis angular velocity in centidegrees/s void rate_bf_yaw_target(float rate_cds) { _ang_vel_body.z = radians(rate_cds * 0.01f); } // Set x-axis system identification angular velocity in degrees/s void rate_bf_roll_sysid(float rate) { _sysid_ang_vel_body.x = rate; } // Set y-axis system identification angular velocity in degrees/s void rate_bf_pitch_sysid(float rate) { _sysid_ang_vel_body.y = rate; } // Set z-axis system identification angular velocity in degrees/s void rate_bf_yaw_sysid(float rate) { _sysid_ang_vel_body.z = rate; } // Set x-axis system identification actuator void actuator_roll_sysid(float command) { _actuator_sysid.x = command; } // Set y-axis system identification actuator void actuator_pitch_sysid(float command) { _actuator_sysid.y = command; } // Set z-axis system identification actuator void actuator_yaw_sysid(float command) { _actuator_sysid.z = command; } // Return roll rate step size in radians/s that results in maximum output after 4 time steps float max_rate_step_bf_roll(); // Return pitch rate step size in radians/s that results in maximum output after 4 time steps float max_rate_step_bf_pitch(); // Return yaw rate step size in radians/s that results in maximum output after 4 time steps float max_rate_step_bf_yaw(); // Return roll step size in radians that results in maximum output after 4 time steps float max_angle_step_bf_roll() { return max_rate_step_bf_roll() / _p_angle_roll.kP(); } // Return pitch step size in radians that results in maximum output after 4 time steps float max_angle_step_bf_pitch() { return max_rate_step_bf_pitch() / _p_angle_pitch.kP(); } // Return yaw step size in radians that results in maximum output after 4 time steps float max_angle_step_bf_yaw() { return max_rate_step_bf_yaw() / _p_angle_yaw.kP(); } // Return angular velocity in radians used in the angular velocity controller Vector3f rate_bf_targets() const { return _ang_vel_body + _sysid_ang_vel_body; } // return the angular velocity of the target (setpoint) attitude rad/s const Vector3f& get_rate_ef_targets() const { return _euler_rate_target; } // Enable or disable body-frame feed forward void bf_feedforward(bool enable_or_disable) { _rate_bf_ff_enabled.set(enable_or_disable); } // Enable or disable body-frame feed forward and save void bf_feedforward_save(bool enable_or_disable) { _rate_bf_ff_enabled.set_and_save(enable_or_disable); } // Return body-frame feed forward setting bool get_bf_feedforward() { return _rate_bf_ff_enabled; } // Enable or disable body-frame feed forward void accel_limiting(bool enable_or_disable); // Update Alt_Hold angle maximum virtual void update_althold_lean_angle_max(float throttle_in) = 0; // Set output throttle virtual void set_throttle_out(float throttle_in, bool apply_angle_boost, float filt_cutoff) = 0; // get throttle passed into attitude controller (i.e. throttle_in provided to set_throttle_out) float get_throttle_in() const { return _throttle_in; } // Return throttle increase applied for tilt compensation float angle_boost() const { return _angle_boost; } // Return tilt angle limit for pilot input that prioritises altitude hold over lean angle virtual float get_althold_lean_angle_max_cd() const; // Return configured tilt angle limit in centidegrees float lean_angle_max_cd() const { return _aparm.angle_max; } // Return tilt angle in degrees float lean_angle_deg() const { return degrees(_thrust_angle); } // calculates the velocity correction from an angle error. The angular velocity has acceleration and // deceleration limits including basic jerk limiting using smoothing_gain static float input_shaping_angle(float error_angle, float input_tc, float accel_max, float target_ang_vel, float desired_ang_vel, float max_ang_vel, float dt); static float input_shaping_angle(float error_angle, float input_tc, float accel_max, float target_ang_vel, float dt){ return input_shaping_angle(error_angle, input_tc, accel_max, target_ang_vel, 0.0f, 0.0f, dt); } // Shapes the velocity request based on a rate time constant. The angular acceleration and deceleration is limited. static float input_shaping_ang_vel(float target_ang_vel, float desired_ang_vel, float accel_max, float dt, float input_tc); // calculates the expected angular velocity correction from an angle error based on the AC_AttitudeControl settings. // This function can be used to predict the delay associated with angle requests. void input_shaping_rate_predictor(const Vector2f &error_angle, Vector2f& target_ang_vel, float dt) const; // translates body frame acceleration limits to the euler axis void ang_vel_limit(Vector3f& euler_rad, float ang_vel_roll_max, float ang_vel_pitch_max, float ang_vel_yaw_max) const; // translates body frame acceleration limits to the euler axis Vector3f euler_accel_limit(const Quaternion &att, const Vector3f &euler_accel); // Calculates the body frame angular velocities to follow the target attitude void update_attitude_target(); // thrust_heading_rotation_angles - calculates two ordered rotations to move the attitude_body quaternion to the attitude_target quaternion. // The maximum error in the yaw axis is limited based on the angle yaw P value and acceleration. void thrust_heading_rotation_angles(Quaternion& attitude_target, const Quaternion& attitude_body, Vector3f& attitude_error, float& thrust_angle, float& thrust_error_angle) const; // thrust_vector_rotation_angles - calculates two ordered rotations to move the attitude_body quaternion to the attitude_target quaternion. // The first rotation corrects the thrust vector and the second rotation corrects the heading vector. void thrust_vector_rotation_angles(const Quaternion& attitude_target, const Quaternion& attitude_body, Quaternion& thrust_vector_correction, Vector3f& attitude_error, float& thrust_angle, float& thrust_error_angle) const; // sanity check parameters. should be called once before take-off virtual void parameter_sanity_check() {} // set the PID notch sample rates virtual void set_notch_sample_rate(float sample_rate) {} // return true if the rpy mix is at lowest value virtual bool is_throttle_mix_min() const { return true; } // control rpy throttle mix virtual void set_throttle_mix_min() {} virtual void set_throttle_mix_man() {} virtual void set_throttle_mix_max(float ratio) {} virtual void set_throttle_mix_value(float value) {} virtual float get_throttle_mix(void) const { return 0; } // enable use of flybass passthrough on heli virtual void use_flybar_passthrough(bool passthrough, bool tail_passthrough) {} // use_leaky_i - controls whether we use leaky i term for body-frame to motor output stage on heli virtual void use_leaky_i(bool leaky_i) {} // set_hover_roll_scalar - scales Hover Roll Trim parameter. To be used by vehicle code according to vehicle condition. virtual void set_hover_roll_trim_scalar(float scalar) {} // Return angle in centidegrees to be added to roll angle for hover collective learn. Used by heli to counteract // tail rotor thrust in hover. Overloaded by AC_Attitude_Heli to return angle. virtual float get_roll_trim_cd() { return 0;} // passthrough_bf_roll_pitch_rate_yaw - roll and pitch are passed through directly, body-frame rate target for yaw virtual void passthrough_bf_roll_pitch_rate_yaw(float roll_passthrough, float pitch_passthrough, float yaw_rate_bf_cds) {}; // provide feedback on whether arming would be a good idea right now: bool pre_arm_checks(const char *param_prefix, char *failure_msg, const uint8_t failure_msg_len); // enable inverted flight on backends that support it virtual void set_inverted_flight(bool inverted) {} // enable accessor for inverted flight flag on backends that support it virtual bool get_inverted_flight() { return false;} // get the slew rate value for roll, pitch and yaw, for oscillation detection in lua scripts void get_rpy_srate(float &roll_srate, float &pitch_srate, float &yaw_srate); // Sets the roll and pitch rate shaping time constant void set_roll_pitch_rate_tc(float input_tc) { _rate_rp_tc = input_tc; } // Sets the yaw rate shaping time constant void set_yaw_rate_tc(float input_tc) { _rate_y_tc = input_tc; } // setup a one loop angle P scale multiplier. This replaces any previous scale applied // so should only be used when only one source of scaling is needed void set_angle_P_scale(const Vector3f &angle_P_scale) { _angle_P_scale = angle_P_scale; } // setup a one loop angle P scale multiplier, multiplying by any // previously applied scale from this loop. This allows for more // than one type of scale factor to be applied for different // purposes void set_angle_P_scale_mult(const Vector3f &angle_P_scale) { _angle_P_scale *= angle_P_scale; } // get the value of the angle P scale that was used in the last loop const Vector3f &get_last_angle_P_scale(void) const { return _angle_P_scale_used; } // setup a one loop PD scale multiplier, multiplying by any // previously applied scale from this loop. This allows for more // than one type of scale factor to be applied for different // purposes void set_PD_scale_mult(const Vector3f &pd_scale) { _pd_scale *= pd_scale; } // write RATE message void Write_Rate(const AC_PosControl &pos_control) const; // write ANG message void Write_ANG() const; // User settable parameters static const struct AP_Param::GroupInfo var_info[]; static constexpr Vector3f VECTORF_111{1.0f,1.0f,1.0f}; protected: // Update rate_target_ang_vel using attitude_error_rot_vec_rad Vector3f update_ang_vel_target_from_att_error(const Vector3f &attitude_error_rot_vec_rad); // Return angle in radians to be added to roll angle. Used by heli to counteract // tail rotor thrust in hover. Overloaded by AC_Attitude_Heli to return angle. virtual float get_roll_trim_rad() { return 0;} // Return the yaw slew rate limit in radians/s float get_slew_yaw_max_rads() const { return radians(get_slew_yaw_max_degs()); } // get the latest gyro for the purposes of attitude control const Vector3f get_latest_gyro() const; // Maximum rate the yaw target can be updated in Loiter, RTL, Auto flight modes AP_Float _slew_yaw; // Maximum angular velocity (in degrees/second) for earth-frame roll, pitch and yaw axis AP_Float _ang_vel_roll_max; AP_Float _ang_vel_pitch_max; AP_Float _ang_vel_yaw_max; // Maximum rotation acceleration for earth-frame roll axis AP_Float _accel_roll_max; // Maximum rotation acceleration for earth-frame pitch axis AP_Float _accel_pitch_max; // Maximum rotation acceleration for earth-frame yaw axis AP_Float _accel_yaw_max; // Enable/Disable body frame rate feed forward AP_Int8 _rate_bf_ff_enabled; // Enable/Disable angle boost AP_Int8 _angle_boost_enabled; // angle controller P objects AC_P _p_angle_roll; AC_P _p_angle_pitch; AC_P _p_angle_yaw; // Angle limit time constant (to maintain altitude) AP_Float _angle_limit_tc; // rate controller input smoothing time constant AP_Float _input_tc; // Controller gain multiplyer to be used when landed AP_Float _land_roll_mult; AP_Float _land_pitch_mult; AP_Float _land_yaw_mult; // latest gyro value use by the rate_controller Vector3f _rate_gyro; // timestamp of the latest gyro value used by the rate controller uint64_t _rate_gyro_time_us; // Intersampling period in seconds float _dt; // This represents a 321-intrinsic rotation in NED frame to the target (setpoint) // attitude used in the attitude controller, in radians. Vector3f _euler_angle_target; // This represents the angular velocity of the target (setpoint) attitude used in // the attitude controller as 321-intrinsic euler angle derivatives, in radians per // second. Vector3f _euler_rate_target; // This represents a quaternion rotation in NED frame to the target (setpoint) // attitude used in the attitude controller. Quaternion _attitude_target; // This represents the angular velocity of the target (setpoint) attitude used in // the attitude controller as an angular velocity vector, in radians per second in // the target attitude frame. Vector3f _ang_vel_target; // This represents the angular velocity in radians per second in the body frame, used in the angular // velocity controller and most importantly the rate controller. Vector3f _ang_vel_body; // This is the angular velocity in radians per second in the body frame, added to the output angular // attitude controller by the System Identification Mode. // It is reset to zero immediately after it is used. Vector3f _sysid_ang_vel_body; // This is the unitless value added to the output of the PID by the System Identification Mode. // It is reset to zero immediately after it is used. Vector3f _actuator_sysid; // This represents a quaternion attitude error in the body frame, used for inertial frame reset handling. Quaternion _attitude_ang_error; // The angle between the target thrust vector and the current thrust vector. float _thrust_angle; // The angle between the target thrust vector and the current thrust vector. float _thrust_error_angle; // throttle provided as input to attitude controller. This does not include angle boost. float _throttle_in = 0.0f; // This represents the throttle increase applied for tilt compensation. // Used only for logging. float _angle_boost; // Specifies whether the attitude controller should use the square root controller in the attitude correction. // This is used during Autotune to ensure the P term is tuned without being influenced by the acceleration limit of the square root controller. bool _use_sqrt_controller; // Filtered Alt_Hold lean angle max - used to limit lean angle when throttle is saturated using Alt_Hold float _althold_lean_angle_max = 0.0f; // desired throttle_low_comp value, actual throttle_low_comp is slewed towards this value over 1~2 seconds float _throttle_rpy_mix_desired; // mix between throttle and hover throttle for 0 to 1 and ratio above hover throttle for >1 float _throttle_rpy_mix; // Yaw feed forward percent to allow zero yaw actuator output during extreme roll and pitch corrections float _feedforward_scalar = 1.0f; // rate controller input smoothing time constant float _rate_rp_tc; float _rate_y_tc; // angle P scaling vector for roll, pitch, yaw Vector3f _angle_P_scale{1,1,1}; // angle scale used for last loop, used for logging and quadplane angle P scaling Vector3f _angle_P_scale_used; // PD scaling vector for roll, pitch, yaw Vector3f _pd_scale{1,1,1}; // PD scale used for last loop, used for logging Vector3f _pd_scale_used; // ratio of normal gain to landed gain float _landed_gain_ratio; // References to external libraries const AP_AHRS_View& _ahrs; const AP_MultiCopter &_aparm; AP_Motors& _motors; static AC_AttitudeControl *_singleton; protected: /* state of control monitoring */ struct { float rms_roll_P; float rms_roll_D; float rms_pitch_P; float rms_pitch_D; float rms_yaw; } _control_monitor; // update state in ControlMonitor void control_monitor_filter_pid(float value, float &rms_P); void control_monitor_update(void); public: // log a CTRL message void control_monitor_log(void) const; // return current RMS controller filter for each axis float control_monitor_rms_output_roll(void) const; float control_monitor_rms_output_roll_P(void) const; float control_monitor_rms_output_roll_D(void) const; float control_monitor_rms_output_pitch_P(void) const; float control_monitor_rms_output_pitch_D(void) const; float control_monitor_rms_output_pitch(void) const; float control_monitor_rms_output_yaw(void) const; // structure for angle and/or rate target enum class HeadingMode { Angle_Only, Angle_And_Rate, Rate_Only }; struct HeadingCommand { float yaw_angle_cd; float yaw_rate_cds; HeadingMode heading_mode; }; void input_thrust_vector_heading(const Vector3f& thrust_vector, HeadingCommand heading); };