/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/*
CAN bootloader support
*/
#include
#include
#if HAL_USE_CAN == TRUE || HAL_NUM_CAN_IFACES
#include
#include
#include
#include "support.h"
#include
#include "can.h"
#include "bl_protocol.h"
#include
#include "app_comms.h"
#include
#include
#include
#include
static CanardInstance canard;
static uint32_t canard_memory_pool[4096/4];
#ifndef HAL_CAN_DEFAULT_NODE_ID
#define HAL_CAN_DEFAULT_NODE_ID CANARD_BROADCAST_NODE_ID
#endif
static uint8_t initial_node_id = HAL_CAN_DEFAULT_NODE_ID;
// can config for 1MBit
static uint32_t baudrate = 1000000U;
#if HAL_USE_CAN
static CANConfig cancfg = {
CAN_MCR_ABOM | CAN_MCR_AWUM | CAN_MCR_TXFP,
0 // filled in below
};
// pipelining is not faster when using ChibiOS CAN driver
#define FW_UPDATE_PIPELINE_LEN 1
#else
ChibiOS::CANIface can_iface[HAL_NUM_CAN_IFACES];
#endif
#ifndef CAN_APP_VERSION_MAJOR
#define CAN_APP_VERSION_MAJOR 2
#endif
#ifndef CAN_APP_VERSION_MINOR
#define CAN_APP_VERSION_MINOR 0
#endif
#ifndef CAN_APP_NODE_NAME
#define CAN_APP_NODE_NAME "org.ardupilot." CHIBIOS_BOARD_NAME
#endif
#ifdef EXT_FLASH_SIZE_MB
static_assert(EXT_FLASH_SIZE_MB == 0, "DroneCAN bootloader cannot support external flash");
#endif
static uint8_t node_id_allocation_transfer_id;
static uavcan_protocol_NodeStatus node_status;
static uint32_t send_next_node_id_allocation_request_at_ms;
static uint8_t node_id_allocation_unique_id_offset;
static void processTx(void);
// keep up to 4 transfers in progress
#ifndef FW_UPDATE_PIPELINE_LEN
#define FW_UPDATE_PIPELINE_LEN 4
#endif
#if CH_CFG_USE_MUTEXES == TRUE
static HAL_Semaphore can_mutex;
#endif
static struct {
uint32_t rtt_ms;
uint32_t ofs;
uint8_t node_id;
uint8_t path[sizeof(uavcan_protocol_file_Path::path.data)+1];
uint8_t sector;
uint32_t sector_ofs;
uint8_t transfer_id;
uint8_t idx;
struct {
uint8_t tx_id;
uint32_t sent_ms;
uint32_t offset;
bool have_reply;
uavcan_protocol_file_ReadResponse pkt;
} reads[FW_UPDATE_PIPELINE_LEN];
uint16_t erased_to;
} fw_update;
/*
get cpu unique ID
*/
static void readUniqueID(uint8_t* out_uid)
{
uint8_t len = sizeof(uavcan_protocol_dynamic_node_id_Allocation::unique_id.data);
memset(out_uid, 0, len);
memcpy(out_uid, (const void *)UDID_START, MIN(len,12));
}
/*
simple 16 bit random number generator
*/
static uint16_t get_randomu16(void)
{
static uint32_t m_z = 1234;
static uint32_t m_w = 76542;
m_z = 36969 * (m_z & 0xFFFFu) + (m_z >> 16);
m_w = 18000 * (m_w & 0xFFFFu) + (m_w >> 16);
return ((m_z << 16) + m_w) & 0xFFFF;
}
/**
* Returns a pseudo random integer in a given range
*/
static uint32_t get_random_range(uint16_t range)
{
return get_randomu16() % range;
}
/*
handle a GET_NODE_INFO request
*/
static void handle_get_node_info(CanardInstance* ins,
CanardRxTransfer* transfer)
{
uint8_t buffer[UAVCAN_PROTOCOL_GETNODEINFO_RESPONSE_MAX_SIZE];
uavcan_protocol_GetNodeInfoResponse pkt {};
node_status.uptime_sec = AP_HAL::millis() / 1000U;
pkt.status = node_status;
pkt.software_version.major = CAN_APP_VERSION_MAJOR;
pkt.software_version.minor = CAN_APP_VERSION_MINOR;
readUniqueID(pkt.hardware_version.unique_id);
// use hw major/minor for APJ_BOARD_ID so we know what fw is
// compatible with this hardware
pkt.hardware_version.major = APJ_BOARD_ID >> 8;
pkt.hardware_version.minor = APJ_BOARD_ID & 0xFF;
char name[strlen(CAN_APP_NODE_NAME)+1];
strcpy(name, CAN_APP_NODE_NAME);
pkt.name.len = strlen(CAN_APP_NODE_NAME);
memcpy(pkt.name.data, name, pkt.name.len);
uint16_t total_size = uavcan_protocol_GetNodeInfoResponse_encode(&pkt, buffer, true);
canardRequestOrRespond(ins,
transfer->source_node_id,
UAVCAN_PROTOCOL_GETNODEINFO_SIGNATURE,
UAVCAN_PROTOCOL_GETNODEINFO_ID,
&transfer->transfer_id,
transfer->priority,
CanardResponse,
&buffer[0],
total_size);
}
/*
send a read for a fw update
*/
static bool send_fw_read(uint8_t idx)
{
auto &r = fw_update.reads[idx];
r.tx_id = fw_update.transfer_id;
r.have_reply = false;
uavcan_protocol_file_ReadRequest pkt {};
pkt.path.path.len = strlen((const char *)fw_update.path);
pkt.offset = r.offset;
memcpy(pkt.path.path.data, fw_update.path, pkt.path.path.len);
uint8_t buffer[UAVCAN_PROTOCOL_FILE_READ_REQUEST_MAX_SIZE];
uint16_t total_size = uavcan_protocol_file_ReadRequest_encode(&pkt, buffer, true);
if (canardRequestOrRespond(&canard,
fw_update.node_id,
UAVCAN_PROTOCOL_FILE_READ_SIGNATURE,
UAVCAN_PROTOCOL_FILE_READ_ID,
&fw_update.transfer_id,
CANARD_TRANSFER_PRIORITY_HIGH,
CanardRequest,
&buffer[0],
total_size) > 0) {
// mark it as having been sent
r.sent_ms = AP_HAL::millis();
return true;
}
return false;
}
/*
send a read for a fw update
*/
static void send_fw_reads(void)
{
const uint32_t now = AP_HAL::millis();
for (uint8_t i=0; isource_node_id != fw_update.node_id) {
return;
}
/*
match the response to a sent request
*/
uint8_t idx = 0;
bool found = false;
for (idx=0; idxtransfer_id) {
found = true;
break;
}
}
if (!found) {
// not a current transfer
return;
}
if (uavcan_protocol_file_ReadResponse_decode(transfer, &fw_update.reads[idx].pkt)) {
return;
}
fw_update.reads[idx].have_reply = true;
uint32_t rtt = MIN(3000,MAX(AP_HAL::millis() - fw_update.reads[idx].sent_ms, 25));
fw_update.rtt_ms = uint32_t(0.9 * fw_update.rtt_ms + 0.1 * rtt);
while (fw_update.reads[fw_update.idx].have_reply) {
auto &r = fw_update.reads[fw_update.idx];
if (r.offset != fw_update.ofs) {
// bad sequence
r.have_reply = false;
r.sent_ms = 0;
break;
}
const auto &pkt = r.pkt;
const uint16_t len = pkt.data.len;
const uint16_t len_words = (len+3U)/4U;
const uint8_t *buf = (uint8_t *)pkt.data.data;
uint32_t buf32[len_words] {};
memcpy((uint8_t*)buf32, buf, len);
if (fw_update.ofs == 0) {
flash_set_keep_unlocked(true);
}
const uint32_t sector_size = flash_func_sector_size(fw_update.sector);
if (sector_size == 0) {
// firmware is too big
fw_update.node_id = 0;
flash_write_flush();
flash_set_keep_unlocked(false);
node_status.vendor_specific_status_code = uint8_t(check_fw_result_t::FAIL_REASON_BAD_LENGTH_APP);
break;
}
if (fw_update.sector_ofs == 0) {
erase_to(fw_update.sector);
}
if (fw_update.sector_ofs+len > sector_size) {
erase_to(fw_update.sector+1);
}
if (!flash_write_buffer(fw_update.ofs, buf32, len_words)) {
continue;
}
fw_update.ofs += len;
fw_update.sector_ofs += len;
if (fw_update.sector_ofs >= flash_func_sector_size(fw_update.sector)) {
fw_update.sector++;
fw_update.sector_ofs -= sector_size;
}
if (len < sizeof(uavcan_protocol_file_ReadResponse::data.data)) {
fw_update.node_id = 0;
flash_write_flush();
flash_set_keep_unlocked(false);
const auto ok = check_good_firmware();
node_status.vendor_specific_status_code = uint8_t(ok);
if (ok == check_fw_result_t::CHECK_FW_OK) {
jump_to_app();
}
return;
}
r.have_reply = false;
r.sent_ms = 0;
r.offset += FW_UPDATE_PIPELINE_LEN*sizeof(uavcan_protocol_file_ReadResponse::data.data);
send_fw_read(fw_update.idx);
processTx();
fw_update.idx = (fw_update.idx + 1) % FW_UPDATE_PIPELINE_LEN;
}
// show offset number we are flashing in kbyte as crude progress indicator
node_status.vendor_specific_status_code = 1 + (fw_update.ofs / 1024U);
}
/*
handle a begin firmware update request. We start pulling in the file data
*/
static void handle_begin_firmware_update(CanardInstance* ins, CanardRxTransfer* transfer)
{
if (fw_update.node_id == 0) {
uavcan_protocol_file_BeginFirmwareUpdateRequest pkt;
if (uavcan_protocol_file_BeginFirmwareUpdateRequest_decode(transfer, &pkt)) {
return;
}
if (pkt.image_file_remote_path.path.len > sizeof(fw_update.path)-1) {
return;
}
memset(&fw_update, 0, sizeof(fw_update));
for (uint8_t i=0; isource_node_id;
}
}
uint8_t buffer[UAVCAN_PROTOCOL_FILE_BEGINFIRMWAREUPDATE_RESPONSE_MAX_SIZE];
uavcan_protocol_file_BeginFirmwareUpdateResponse reply {};
reply.error = UAVCAN_PROTOCOL_FILE_BEGINFIRMWAREUPDATE_RESPONSE_ERROR_OK;
uint32_t total_size = uavcan_protocol_file_BeginFirmwareUpdateResponse_encode(&reply, buffer, true);
canardRequestOrRespond(ins,
transfer->source_node_id,
UAVCAN_PROTOCOL_FILE_BEGINFIRMWAREUPDATE_SIGNATURE,
UAVCAN_PROTOCOL_FILE_BEGINFIRMWAREUPDATE_ID,
&transfer->transfer_id,
transfer->priority,
CanardResponse,
&buffer[0],
total_size);
}
static void handle_allocation_response(CanardInstance* ins, CanardRxTransfer* transfer)
{
// Rule C - updating the randomized time interval
send_next_node_id_allocation_request_at_ms =
AP_HAL::millis() + UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_MIN_REQUEST_PERIOD_MS +
get_random_range(UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_MAX_FOLLOWUP_DELAY_MS);
if (transfer->source_node_id == CANARD_BROADCAST_NODE_ID)
{
node_id_allocation_unique_id_offset = 0;
return;
}
struct uavcan_protocol_dynamic_node_id_Allocation msg;
if (uavcan_protocol_dynamic_node_id_Allocation_decode(transfer, &msg)) {
return;
}
// Obtaining the local unique ID
uint8_t my_unique_id[sizeof(uavcan_protocol_dynamic_node_id_Allocation::unique_id.data)];
readUniqueID(my_unique_id);
// Matching the received UID against the local one
if (memcmp(msg.unique_id.data, my_unique_id, msg.unique_id.len) != 0) {
node_id_allocation_unique_id_offset = 0;
return; // No match, return
}
if (msg.unique_id.len < sizeof(msg.unique_id.data)) {
// The allocator has confirmed part of unique ID, switching to the next stage and updating the timeout.
node_id_allocation_unique_id_offset = msg.unique_id.len;
send_next_node_id_allocation_request_at_ms -= UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_MIN_REQUEST_PERIOD_MS;
} else if (msg.node_id != CANARD_BROADCAST_NODE_ID) { // new ID valid? (if not we will time out and start over)
// Allocation complete - copying the allocated node ID from the message
canardSetLocalNodeID(ins, msg.node_id);
}
}
/**
* This callback is invoked by the library when a new message or request or response is received.
*/
static void onTransferReceived(CanardInstance* ins,
CanardRxTransfer* transfer)
{
/*
* Dynamic node ID allocation protocol.
* Taking this branch only if we don't have a node ID, ignoring otherwise.
*/
if (canardGetLocalNodeID(ins) == CANARD_BROADCAST_NODE_ID) {
if (transfer->transfer_type == CanardTransferTypeBroadcast &&
transfer->data_type_id == UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_ID) {
handle_allocation_response(ins, transfer);
}
return;
}
switch (transfer->data_type_id) {
case UAVCAN_PROTOCOL_GETNODEINFO_ID:
handle_get_node_info(ins, transfer);
break;
case UAVCAN_PROTOCOL_FILE_BEGINFIRMWAREUPDATE_ID:
handle_begin_firmware_update(ins, transfer);
break;
case UAVCAN_PROTOCOL_FILE_READ_ID:
handle_file_read_response(ins, transfer);
break;
case UAVCAN_PROTOCOL_RESTARTNODE_ID:
NVIC_SystemReset();
break;
}
}
/**
* This callback is invoked by the library when it detects beginning of a new transfer on the bus that can be received
* by the local node.
* If the callback returns true, the library will receive the transfer.
* If the callback returns false, the library will ignore the transfer.
* All transfers that are addressed to other nodes are always ignored.
*/
static bool shouldAcceptTransfer(const CanardInstance* ins,
uint64_t* out_data_type_signature,
uint16_t data_type_id,
CanardTransferType transfer_type,
uint8_t source_node_id)
{
(void)source_node_id;
if (canardGetLocalNodeID(ins) == CANARD_BROADCAST_NODE_ID) {
/*
* If we're in the process of allocation of dynamic node ID, accept only relevant transfers.
*/
if ((transfer_type == CanardTransferTypeBroadcast) &&
(data_type_id == UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_ID))
{
*out_data_type_signature = UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_SIGNATURE;
return true;
}
return false;
}
switch (data_type_id) {
case UAVCAN_PROTOCOL_GETNODEINFO_ID:
*out_data_type_signature = UAVCAN_PROTOCOL_GETNODEINFO_SIGNATURE;
return true;
case UAVCAN_PROTOCOL_FILE_BEGINFIRMWAREUPDATE_ID:
*out_data_type_signature = UAVCAN_PROTOCOL_FILE_BEGINFIRMWAREUPDATE_SIGNATURE;
return true;
case UAVCAN_PROTOCOL_RESTARTNODE_ID:
*out_data_type_signature = UAVCAN_PROTOCOL_RESTARTNODE_SIGNATURE;
return true;
case UAVCAN_PROTOCOL_FILE_READ_ID:
*out_data_type_signature = UAVCAN_PROTOCOL_FILE_READ_SIGNATURE;
return true;
default:
break;
}
return false;
}
#if HAL_USE_CAN
static void processTx(void)
{
static uint8_t fail_count;
for (const CanardCANFrame* txf = NULL; (txf = canardPeekTxQueue(&canard)) != NULL;) {
CANTxFrame txmsg {};
txmsg.DLC = txf->data_len;
memcpy(txmsg.data8, txf->data, 8);
txmsg.EID = txf->id & CANARD_CAN_EXT_ID_MASK;
txmsg.IDE = 1;
txmsg.RTR = 0;
if (canTransmit(&CAND1, CAN_ANY_MAILBOX, &txmsg, TIME_IMMEDIATE) == MSG_OK) {
canardPopTxQueue(&canard);
fail_count = 0;
} else {
// just exit and try again later. If we fail 8 times in a row
// then start discarding to prevent the pool filling up
if (fail_count < 8) {
fail_count++;
} else {
canardPopTxQueue(&canard);
}
return;
}
}
}
static void processRx(void)
{
CANRxFrame rxmsg {};
while (canReceive(&CAND1, CAN_ANY_MAILBOX, &rxmsg, TIME_IMMEDIATE) == MSG_OK) {
CanardCANFrame rx_frame {};
#ifdef HAL_GPIO_PIN_LED_BOOTLOADER
palToggleLine(HAL_GPIO_PIN_LED_BOOTLOADER);
#endif
const uint64_t timestamp = AP_HAL::micros64();
memcpy(rx_frame.data, rxmsg.data8, 8);
rx_frame.data_len = rxmsg.DLC;
if(rxmsg.IDE) {
rx_frame.id = CANARD_CAN_FRAME_EFF | rxmsg.EID;
} else {
rx_frame.id = rxmsg.SID;
}
canardHandleRxFrame(&canard, &rx_frame, timestamp);
}
}
#else
// Use HAL CAN interface
static void processTx(void)
{
static uint8_t fail_count;
for (const CanardCANFrame* txf = NULL; (txf = canardPeekTxQueue(&canard)) != NULL;) {
AP_HAL::CANFrame txmsg {};
txmsg.dlc = txf->data_len;
memcpy(txmsg.data, txf->data, 8);
txmsg.id = (txf->id | AP_HAL::CANFrame::FlagEFF);
// push message with 1s timeout
bool send_ok = false;
for (uint8_t i=0; i 0);
}
if (send_ok) {
canardPopTxQueue(&canard);
fail_count = 0;
} else {
// just exit and try again later. If we fail 8 times in a row
// then start discarding to prevent the pool filling up
if (fail_count < 8) {
fail_count++;
} else {
canardPopTxQueue(&canard);
}
return;
}
}
}
static void processRx(void)
{
AP_HAL::CANFrame rxmsg;
while (true) {
bool got_pkt = false;
for (uint8_t i=0; i MaxLenOfUniqueIDInRequest) {
uid_size = MaxLenOfUniqueIDInRequest;
}
memmove(&allocation_request[1], &my_unique_id[node_id_allocation_unique_id_offset], uid_size);
// Broadcasting the request
canard_broadcast(UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_SIGNATURE,
UAVCAN_PROTOCOL_DYNAMIC_NODE_ID_ALLOCATION_ID,
node_id_allocation_transfer_id,
CANARD_TRANSFER_PRIORITY_LOW,
&allocation_request[0],
(uint16_t) (uid_size + 1));
// Preparing for timeout; if response is received, this value will be updated from the callback.
node_id_allocation_unique_id_offset = 0;
}
static void send_node_status(void)
{
uint8_t buffer[UAVCAN_PROTOCOL_NODESTATUS_MAX_SIZE];
node_status.uptime_sec = AP_HAL::millis() / 1000U;
uint32_t len = uavcan_protocol_NodeStatus_encode(&node_status, buffer, true);
static uint8_t transfer_id; // Note that the transfer ID variable MUST BE STATIC (or heap-allocated)!
canard_broadcast(UAVCAN_PROTOCOL_NODESTATUS_SIGNATURE,
UAVCAN_PROTOCOL_NODESTATUS_ID,
transfer_id,
CANARD_TRANSFER_PRIORITY_LOW,
buffer,
len);
}
/**
* This function is called at 1 Hz rate from the main loop.
*/
static void process1HzTasks(uint64_t timestamp_usec)
{
canardCleanupStaleTransfers(&canard, timestamp_usec);
if (canardGetLocalNodeID(&canard) != CANARD_BROADCAST_NODE_ID) {
node_status.mode = fw_update.node_id?UAVCAN_PROTOCOL_NODESTATUS_MODE_SOFTWARE_UPDATE:UAVCAN_PROTOCOL_NODESTATUS_MODE_MAINTENANCE;
send_node_status();
}
}
void can_set_node_id(uint8_t node_id)
{
initial_node_id = node_id;
}
// check for a firmware update marker left by app
bool can_check_update(void)
{
bool ret = false;
#if HAL_RAM_RESERVE_START >= 256
struct app_bootloader_comms *comms = (struct app_bootloader_comms *)HAL_RAM0_START;
if (comms->magic == APP_BOOTLOADER_COMMS_MAGIC && comms->my_node_id != 0) {
can_set_node_id(comms->my_node_id);
fw_update.node_id = comms->server_node_id;
for (uint8_t i=0; ipath, sizeof(uavcan_protocol_file_Path::path.data)+1);
ret = true;
// clear comms region
memset(comms, 0, sizeof(struct app_bootloader_comms));
}
#endif
#if defined(CAN1_BASE) && defined(RCC_APB1ENR_CAN1EN)
// check for px4 fw update. px4 uses the filter registers in CAN1
// to communicate with the bootloader. This only works on CAN1
if (!ret && stm32_was_software_reset()) {
uint32_t *fir = (uint32_t *)(CAN1_BASE + 0x240);
struct PACKED app_shared {
union {
uint64_t ull;
uint32_t ul[2];
uint8_t valid;
} crc;
uint32_t signature;
uint32_t bus_speed;
uint32_t node_id;
} *app = (struct app_shared *)&fir[4];
/* we need to enable the CAN peripheral in order to look at
the FIR registers.
*/
RCC->APB1ENR |= RCC_APB1ENR_CAN1EN;
static const uint32_t app_signature = 0xb0a04150;
if (app->signature == app_signature &&
app->node_id > 0 && app->node_id < 128) {
// crc is in reversed word order in FIR registers
uint32_t sig[3];
memcpy((uint8_t *)&sig[0], (const uint8_t *)&app->signature, sizeof(sig));
const uint64_t crc = crc_crc64(sig, 3);
const uint32_t *crc32 = (const uint32_t *)&crc;
if (crc32[0] == app->crc.ul[1] &&
crc32[1] == app->crc.ul[0]) {
// reset signature so we don't get in a boot loop
app->signature = 0;
// setup node ID
can_set_node_id(app->node_id);
// and baudrate
baudrate = app->bus_speed;
ret = true;
}
}
}
#endif
return ret;
}
void can_start()
{
node_status.vendor_specific_status_code = uint8_t(check_good_firmware());
node_status.mode = UAVCAN_PROTOCOL_NODESTATUS_MODE_MAINTENANCE;
#if HAL_USE_CAN
// calculate optimal CAN timings given PCLK1 and baudrate
CanardSTM32CANTimings timings {};
canardSTM32ComputeCANTimings(STM32_PCLK1, baudrate, &timings);
cancfg.btr = CAN_BTR_SJW(0) |
CAN_BTR_TS2(timings.bit_segment_2-1) |
CAN_BTR_TS1(timings.bit_segment_1-1) |
CAN_BTR_BRP(timings.bit_rate_prescaler-1);
canStart(&CAND1, &cancfg);
#else
for (uint8_t i=0; i= 1000) {
last_1Hz_ms = now;
process1HzTasks(AP_HAL::micros64());
}
if (fw_update.node_id != 0) {
send_fw_reads();
}
#if CH_CFG_ST_FREQUENCY >= 1000000
// give a bit of time for background processing
chThdSleepMicroseconds(200);
#endif
} while (fw_update.node_id != 0);
}
// printf to CAN LogMessage for debugging
void can_vprintf(const char *fmt, va_list ap)
{
// only on H7 for now, where we have plenty of flash
#if defined(STM32H7)
uavcan_protocol_debug_LogMessage pkt {};
uint8_t buffer[UAVCAN_PROTOCOL_DEBUG_LOGMESSAGE_MAX_SIZE];
uint32_t n = vsnprintf((char*)pkt.text.data, sizeof(pkt.text.data), fmt, ap);
pkt.text.len = MIN(n, sizeof(pkt.text.data));
uint32_t len = uavcan_protocol_debug_LogMessage_encode(&pkt, buffer, true);
static uint8_t logmsg_transfer_id;
canard_broadcast(UAVCAN_PROTOCOL_DEBUG_LOGMESSAGE_SIGNATURE,
UAVCAN_PROTOCOL_DEBUG_LOGMESSAGE_ID,
logmsg_transfer_id,
CANARD_TRANSFER_PRIORITY_LOW,
buffer,
len);
#endif // defined(STM32H7)
}
// printf to CAN LogMessage for debugging
void can_printf(const char *fmt, ...)
{
// only on H7 for now, where we have plenty of flash
#if defined(STM32H7)
va_list ap;
va_start(ap, fmt);
can_vprintf(fmt, ap);
va_end(ap);
#endif // defined(STM32H7)
}
void can_printf_severity(uint8_t severity, const char *fmt, ...)
{
// only on H7 for now, where we have plenty of flash
#if defined(STM32H7)
va_list ap;
va_start(ap, fmt);
can_vprintf(fmt, ap);
va_end(ap);
#endif
}
#endif // HAL_USE_CAN