/***************************************************************************** The init_ardupilot function processes everything we need for an in - air restart We will determine later if we are actually on the ground and process a ground start in that case. *****************************************************************************/ #include "Rover.h" static void mavlink_delay_cb_static() { rover.mavlink_delay_cb(); } static void failsafe_check_static() { rover.failsafe_check(); } void Rover::init_ardupilot() { // initialise console serial port serial_manager.init_console(); hal.console->printf("\n\nInit %s" "\n\nFree RAM: %u\n", fwver.fw_string, hal.util->available_memory()); // // Check the EEPROM format version before loading any parameters from EEPROM. // load_parameters(); // initialise stats module g2.stats.init(); gcs().set_dataflash(&DataFlash); mavlink_system.sysid = g.sysid_this_mav; // initialise serial ports serial_manager.init(); // setup first port early to allow BoardConfig to report errors gcs().chan(0).setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, 0); // Register mavlink_delay_cb, which will run anytime you have // more than 5ms remaining in your call to hal.scheduler->delay hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5); BoardConfig.init(); #if HAL_WITH_UAVCAN BoardConfig_CAN.init(); #endif // initialise notify system notify.init(false); AP_Notify::flags.failsafe_battery = false; notify_mode(control_mode); ServoRelayEvents.set_channel_mask(0xFFF0); battery.init(); rssi.init(); // init baro before we start the GCS, so that the CLI baro test works barometer.init(); // we start by assuming USB connected, as we initialed the serial // port with SERIAL0_BAUD. check_usb_mux() fixes this if need be. usb_connected = true; check_usb_mux(); // setup telem slots with serial ports gcs().setup_uarts(serial_manager); // setup frsky telemetry #if FRSKY_TELEM_ENABLED == ENABLED frsky_telemetry.init(serial_manager, fwver.fw_string, (is_boat() ? MAV_TYPE_SURFACE_BOAT : MAV_TYPE_GROUND_ROVER)); #endif #if LOGGING_ENABLED == ENABLED log_init(); #endif // initialise compass init_compass(); // initialise rangefinder init_rangefinder(); // init beacons used for non-gps position estimation init_beacon(); // init visual odometry init_visual_odom(); // and baro for EKF init_barometer(true); // Do GPS init gps.set_log_gps_bit(MASK_LOG_GPS); gps.init(serial_manager); rc_override_active = hal.rcin->set_overrides(rc_override, 8); ins.set_log_raw_bit(MASK_LOG_IMU_RAW); set_control_channels(); // setup radio channels and ouputs ranges init_rc_in(); // sets up rc channels deadzone g2.motors.init(); // init motors including setting servo out channels ranges init_rc_out(); // enable output // init wheel encoders g2.wheel_encoder.init(); relay.init(); #if MOUNT == ENABLED // initialise camera mount camera_mount.init(serial_manager); #endif /* setup the 'main loop is dead' check. Note that this relies on the RC library being initialised. */ hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000); // give AHRS the range beacon sensor ahrs.set_beacon(&g2.beacon); // initialize SmartRTL g2.smart_rtl.init(); init_capabilities(); startup_ground(); Mode *initial_mode = mode_from_mode_num((enum mode)g.initial_mode.get()); if (initial_mode == nullptr) { initial_mode = &mode_initializing; } set_mode(*initial_mode, MODE_REASON_INITIALISED); // set the correct flight mode // --------------------------- reset_control_switch(); init_aux_switch(); // disable safety if requested BoardConfig.init_safety(); // flag that initialisation has completed initialised = true; } //********************************************************************************* // This function does all the calibrations, etc. that we need during a ground start //********************************************************************************* void Rover::startup_ground(void) { set_mode(mode_initializing, MODE_REASON_INITIALISED); gcs().send_text(MAV_SEVERITY_INFO, " Ground start"); #if(GROUND_START_DELAY > 0) gcs().send_text(MAV_SEVERITY_NOTICE, " With delay"); delay(GROUND_START_DELAY * 1000); #endif // IMU ground start //------------------------ // startup_INS_ground(); // initialise mission library mission.init(); // initialise DataFlash library DataFlash.set_mission(&mission); DataFlash.setVehicle_Startup_Log_Writer( FUNCTOR_BIND(&rover, &Rover::Log_Write_Vehicle_Startup_Messages, void) ); // we don't want writes to the serial port to cause us to pause // so set serial ports non-blocking once we are ready to drive serial_manager.set_blocking_writes_all(false); gcs().send_text(MAV_SEVERITY_INFO, "Ready to drive"); } /* set the in_reverse flag reset the throttle integrator if this changes in_reverse */ void Rover::set_reverse(bool reverse) { if (in_reverse == reverse) { return; } in_reverse = reverse; } bool Rover::set_mode(Mode &new_mode, mode_reason_t reason) { if (control_mode == &new_mode) { // don't switch modes if we are already in the correct mode. return true; } Mode &old_mode = *control_mode; if (!new_mode.enter()) { // Log error that we failed to enter desired flight mode Log_Write_Error(ERROR_SUBSYSTEM_FLIGHT_MODE, new_mode.mode_number()); gcs().send_text(MAV_SEVERITY_WARNING, "Flight mode change failed"); return false; } control_mode = &new_mode; #if FRSKY_TELEM_ENABLED == ENABLED frsky_telemetry.update_control_mode(control_mode->mode_number()); #endif #if CAMERA == ENABLED camera.set_is_auto_mode(control_mode->mode_number() == AUTO); #endif old_mode.exit(); control_mode_reason = reason; DataFlash.Log_Write_Mode(control_mode->mode_number(), control_mode_reason); notify_mode(control_mode); return true; } void Rover::startup_INS_ground(void) { gcs().send_text(MAV_SEVERITY_INFO, "Beginning INS calibration. Do not move vehicle"); hal.scheduler->delay(100); ahrs.init(); // say to EKF that rover only move by goind forward ahrs.set_fly_forward(true); ahrs.set_vehicle_class(AHRS_VEHICLE_GROUND); ins.init(scheduler.get_loop_rate_hz()); ahrs.reset(); } // updates the notify state // should be called at 50hz void Rover::update_notify() { notify.update(); } void Rover::resetPerfData(void) { mainLoop_count = 0; G_Dt_max = 0; perf_mon_timer = millis(); } void Rover::check_usb_mux(void) { bool usb_check = hal.gpio->usb_connected(); if (usb_check == usb_connected) { return; } // the user has switched to/from the telemetry port usb_connected = usb_check; } // update notify with mode change void Rover::notify_mode(const Mode *mode) { notify.flags.flight_mode = mode->mode_number(); notify.set_flight_mode_str(mode->name4()); } /* check a digitial pin for high,low (1/0) */ uint8_t Rover::check_digital_pin(uint8_t pin) { const int8_t dpin = hal.gpio->analogPinToDigitalPin(pin); if (dpin == -1) { return 0; } // ensure we are in input mode hal.gpio->pinMode(dpin, HAL_GPIO_INPUT); // enable pullup hal.gpio->write(dpin, 1); return hal.gpio->read(dpin); } /* should we log a message type now? */ bool Rover::should_log(uint32_t mask) { return DataFlash.should_log(mask); } /* update AHRS soft arm state and log as needed */ void Rover::change_arm_state(void) { Log_Arm_Disarm(); update_soft_armed(); } /* arm motors */ bool Rover::arm_motors(AP_Arming::ArmingMethod method) { if (!arming.arm(method)) { AP_Notify::events.arming_failed = true; return false; } // Reset SmartRTL return location. If activated, SmartRTL will ultimately try to land at this point g2.smart_rtl.reset_path(true); change_arm_state(); return true; } /* disarm motors */ bool Rover::disarm_motors(void) { if (!arming.disarm()) { return false; } if (control_mode != &mode_auto) { // reset the mission on disarm if we are not in auto mission.reset(); } // only log if disarming was successful change_arm_state(); return true; } // save current position for use by the smart_rtl mode void Rover::smart_rtl_update() { const bool save_position = hal.util->get_soft_armed() && (control_mode != &mode_smartrtl); mode_smartrtl.save_position(save_position); } // returns true if vehicle is a boat // this affects whether the vehicle tries to maintain position after reaching waypoints bool Rover::is_boat() const { return ((enum frame_class)g2.frame_class.get() == FRAME_BOAT); }