#include "Copter.h" #if MODE_GUIDED_ENABLED == ENABLED /* * Init and run calls for guided flight mode */ static Vector3p guided_pos_target_cm; // position target (used by posvel controller only) bool guided_pos_terrain_alt; // true if guided_pos_target_cm.z is an alt above terrain static Vector3f guided_vel_target_cms; // velocity target (used by pos_vel_accel controller and vel_accel controller) static Vector3f guided_accel_target_cmss; // acceleration target (used by pos_vel_accel controller vel_accel controller and accel controller) static uint32_t update_time_ms; // system time of last target update to pos_vel_accel, vel_accel or accel controller struct { uint32_t update_time_ms; Quaternion attitude_quat; Vector3f ang_vel; float yaw_rate_cds; float climb_rate_cms; // climb rate in cms. Used if use_thrust is false float thrust; // thrust from -1 to 1. Used if use_thrust is true bool use_yaw_rate; bool use_thrust; } static guided_angle_state; struct Guided_Limit { uint32_t timeout_ms; // timeout (in seconds) from the time that guided is invoked float alt_min_cm; // lower altitude limit in cm above home (0 = no limit) float alt_max_cm; // upper altitude limit in cm above home (0 = no limit) float horiz_max_cm; // horizontal position limit in cm from where guided mode was initiated (0 = no limit) uint32_t start_time;// system time in milliseconds that control was handed to the external computer Vector3f start_pos; // start position as a distance from home in cm. used for checking horiz_max limit } guided_limit; // init - initialise guided controller bool ModeGuided::init(bool ignore_checks) { // start in velaccel control mode velaccel_control_start(); guided_vel_target_cms.zero(); guided_accel_target_cmss.zero(); send_notification = false; // clear pause state when entering guided mode _paused = false; return true; } // run - runs the guided controller // should be called at 100hz or more void ModeGuided::run() { // run pause control if the vehicle is paused if (_paused) { pause_control_run(); return; } // call the correct auto controller switch (guided_mode) { case SubMode::TakeOff: // run takeoff controller takeoff_run(); break; case SubMode::WP: // run waypoint controller wp_control_run(); if (send_notification && wp_nav->reached_wp_destination()) { send_notification = false; gcs().send_mission_item_reached_message(0); } break; case SubMode::Pos: // run position controller pos_control_run(); break; case SubMode::Accel: accel_control_run(); break; case SubMode::VelAccel: velaccel_control_run(); break; case SubMode::PosVelAccel: posvelaccel_control_run(); break; case SubMode::Angle: angle_control_run(); break; } } bool ModeGuided::allows_arming(AP_Arming::Method method) const { // always allow arming from the ground station if (method == AP_Arming::Method::MAVLINK) { return true; } // optionally allow arming from the transmitter return (copter.g2.guided_options & (uint32_t)Options::AllowArmingFromTX) != 0; }; // initialises position controller to implement take-off // takeoff_alt_cm is interpreted as alt-above-home (in cm) or alt-above-terrain if a rangefinder is available bool ModeGuided::do_user_takeoff_start(float takeoff_alt_cm) { // calculate target altitude and frame (either alt-above-ekf-origin or alt-above-terrain) int32_t alt_target_cm; bool alt_target_terrain = false; if (wp_nav->rangefinder_used_and_healthy() && wp_nav->get_terrain_source() == AC_WPNav::TerrainSource::TERRAIN_FROM_RANGEFINDER && takeoff_alt_cm < copter.rangefinder.max_distance_cm_orient(ROTATION_PITCH_270)) { // can't takeoff downwards if (takeoff_alt_cm <= copter.rangefinder_state.alt_cm) { return false; } // provide target altitude as alt-above-terrain alt_target_cm = takeoff_alt_cm; alt_target_terrain = true; } else { // interpret altitude as alt-above-home Location target_loc = copter.current_loc; target_loc.set_alt_cm(takeoff_alt_cm, Location::AltFrame::ABOVE_HOME); // provide target altitude as alt-above-ekf-origin if (!target_loc.get_alt_cm(Location::AltFrame::ABOVE_ORIGIN, alt_target_cm)) { // this should never happen but we reject the command just in case return false; } } guided_mode = SubMode::TakeOff; // initialise yaw auto_yaw.set_mode(AUTO_YAW_HOLD); // clear i term when we're taking off pos_control->init_z_controller(); // initialise alt for WP_NAVALT_MIN and set completion alt auto_takeoff_start(alt_target_cm, alt_target_terrain); // record takeoff has not completed takeoff_complete = false; return true; } // initialise guided mode's waypoint navigation controller void ModeGuided::wp_control_start() { // set to position control mode guided_mode = SubMode::WP; // initialise waypoint and spline controller wp_nav->wp_and_spline_init(); // initialise wpnav to stopping point Vector3f stopping_point; wp_nav->get_wp_stopping_point(stopping_point); if (!wp_nav->set_wp_destination(stopping_point, false)) { // this should never happen because terrain data is not used INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); } // initialise yaw auto_yaw.set_mode_to_default(false); } // run guided mode's waypoint navigation controller void ModeGuided::wp_control_run() { // process pilot's yaw input float target_yaw_rate = 0; if (!copter.failsafe.radio && use_pilot_yaw()) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz()); if (!is_zero(target_yaw_rate)) { auto_yaw.set_mode(AUTO_YAW_HOLD); } } // if not armed set throttle to zero and exit immediately if (is_disarmed_or_landed()) { // do not spool down tradheli when on the ground with motor interlock enabled make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock()); return; } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // run waypoint controller copter.failsafe_terrain_set_status(wp_nav->update_wpnav()); // call z-axis position controller (wpnav should have already updated it's alt target) pos_control->update_z_controller(); // call attitude controller if (auto_yaw.mode() == AUTO_YAW_HOLD) { // roll & pitch from waypoint controller, yaw rate from pilot attitude_control->input_thrust_vector_rate_heading(wp_nav->get_thrust_vector(), target_yaw_rate); } else if (auto_yaw.mode() == AUTO_YAW_RATE) { // roll & pitch from waypoint controller, yaw rate from mavlink command or mission item attitude_control->input_thrust_vector_rate_heading(wp_nav->get_thrust_vector(), auto_yaw.rate_cds()); } else { // roll, pitch from waypoint controller, yaw heading from GCS or auto_heading() attitude_control->input_thrust_vector_heading(wp_nav->get_thrust_vector(), auto_yaw.yaw()); } } // initialise position controller void ModeGuided::pva_control_start() { // initialise horizontal speed, acceleration pos_control->set_max_speed_accel_xy(wp_nav->get_default_speed_xy(), wp_nav->get_wp_acceleration()); pos_control->set_correction_speed_accel_xy(wp_nav->get_default_speed_xy(), wp_nav->get_wp_acceleration()); // initialize vertical speeds and acceleration pos_control->set_max_speed_accel_z(wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up(), wp_nav->get_accel_z()); pos_control->set_correction_speed_accel_z(wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up(), wp_nav->get_accel_z()); // initialise velocity controller pos_control->init_z_controller(); pos_control->init_xy_controller(); // initialise yaw auto_yaw.set_mode_to_default(false); // initialise terrain alt guided_pos_terrain_alt = false; } // initialise guided mode's position controller void ModeGuided::pos_control_start() { // set to position control mode guided_mode = SubMode::Pos; // initialise position controller pva_control_start(); } // initialise guided mode's velocity controller void ModeGuided::accel_control_start() { // set guided_mode to velocity controller guided_mode = SubMode::Accel; // initialise position controller pva_control_start(); } // initialise guided mode's velocity and acceleration controller void ModeGuided::velaccel_control_start() { // set guided_mode to velocity controller guided_mode = SubMode::VelAccel; // initialise position controller pva_control_start(); } // initialise guided mode's position, velocity and acceleration controller void ModeGuided::posvelaccel_control_start() { // set guided_mode to velocity controller guided_mode = SubMode::PosVelAccel; // initialise position controller pva_control_start(); } bool ModeGuided::is_taking_off() const { return guided_mode == SubMode::TakeOff && !takeoff_complete; } bool ModeGuided::set_speed_xy(float speed_xy_cms) { // initialise horizontal speed, acceleration pos_control->set_max_speed_accel_xy(speed_xy_cms, wp_nav->get_wp_acceleration()); pos_control->set_correction_speed_accel_xy(speed_xy_cms, wp_nav->get_wp_acceleration()); return true; } bool ModeGuided::set_speed_up(float speed_up_cms) { // initialize vertical speeds and acceleration pos_control->set_max_speed_accel_z(wp_nav->get_default_speed_down(), speed_up_cms, wp_nav->get_accel_z()); pos_control->set_correction_speed_accel_z(wp_nav->get_default_speed_down(), speed_up_cms, wp_nav->get_accel_z()); return true; } bool ModeGuided::set_speed_down(float speed_down_cms) { // initialize vertical speeds and acceleration pos_control->set_max_speed_accel_z(speed_down_cms, wp_nav->get_default_speed_up(), wp_nav->get_accel_z()); pos_control->set_correction_speed_accel_z(speed_down_cms, wp_nav->get_default_speed_up(), wp_nav->get_accel_z()); return true; } // initialise guided mode's angle controller void ModeGuided::angle_control_start() { // set guided_mode to velocity controller guided_mode = SubMode::Angle; // set vertical speed and acceleration limits pos_control->set_max_speed_accel_z(wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up(), wp_nav->get_accel_z()); pos_control->set_correction_speed_accel_z(wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up(), wp_nav->get_accel_z()); // initialise the vertical position controller if (!pos_control->is_active_z()) { pos_control->init_z_controller(); } // initialise targets guided_angle_state.update_time_ms = millis(); guided_angle_state.attitude_quat.initialise(); guided_angle_state.ang_vel.zero(); guided_angle_state.climb_rate_cms = 0.0f; guided_angle_state.yaw_rate_cds = 0.0f; guided_angle_state.use_yaw_rate = false; // pilot always controls yaw auto_yaw.set_mode(AUTO_YAW_HOLD); } // set_destination - sets guided mode's target destination // Returns true if the fence is enabled and guided waypoint is within the fence // else return false if the waypoint is outside the fence bool ModeGuided::set_destination(const Vector3f& destination, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw, bool terrain_alt) { #if AP_FENCE_ENABLED // reject destination if outside the fence const Location dest_loc(destination, terrain_alt ? Location::AltFrame::ABOVE_TERRAIN : Location::AltFrame::ABOVE_ORIGIN); if (!copter.fence.check_destination_within_fence(dest_loc)) { AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE); // failure is propagated to GCS with NAK return false; } #endif // if configured to use wpnav for position control if (use_wpnav_for_position_control()) { // ensure we are in position control mode if (guided_mode != SubMode::WP) { wp_control_start(); } // set yaw state set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw); // no need to check return status because terrain data is not used wp_nav->set_wp_destination(destination, terrain_alt); // log target copter.Log_Write_Guided_Position_Target(guided_mode, destination, terrain_alt, Vector3f(), Vector3f()); send_notification = true; return true; } // if configured to use position controller for position control // ensure we are in position control mode if (guided_mode != SubMode::Pos) { pos_control_start(); } // initialise terrain following if needed if (terrain_alt) { // get current alt above terrain float origin_terr_offset; if (!wp_nav->get_terrain_offset(origin_terr_offset)) { // if we don't have terrain altitude then stop init(true); return false; } // convert origin to alt-above-terrain if necessary if (!guided_pos_terrain_alt) { // new destination is alt-above-terrain, previous destination was alt-above-ekf-origin pos_control->set_pos_offset_z_cm(origin_terr_offset); } } else { pos_control->set_pos_offset_z_cm(0.0); } // set yaw state set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw); // set position target and zero velocity and acceleration guided_pos_target_cm = destination.topostype(); guided_pos_terrain_alt = terrain_alt; guided_vel_target_cms.zero(); guided_accel_target_cmss.zero(); update_time_ms = millis(); // log target copter.Log_Write_Guided_Position_Target(guided_mode, guided_pos_target_cm.tofloat(), guided_pos_terrain_alt, guided_vel_target_cms, guided_accel_target_cmss); send_notification = true; return true; } bool ModeGuided::get_wp(Location& destination) const { switch (guided_mode) { case SubMode::WP: return wp_nav->get_oa_wp_destination(destination); case SubMode::Pos: destination = Location(guided_pos_target_cm.tofloat(), guided_pos_terrain_alt ? Location::AltFrame::ABOVE_TERRAIN : Location::AltFrame::ABOVE_ORIGIN); return true; default: return false; } // should never get here but just in case return false; } // sets guided mode's target from a Location object // returns false if destination could not be set (probably caused by missing terrain data) // or if the fence is enabled and guided waypoint is outside the fence bool ModeGuided::set_destination(const Location& dest_loc, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw) { #if AP_FENCE_ENABLED // reject destination outside the fence. // Note: there is a danger that a target specified as a terrain altitude might not be checked if the conversion to alt-above-home fails if (!copter.fence.check_destination_within_fence(dest_loc)) { AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE); // failure is propagated to GCS with NAK return false; } #endif // if using wpnav for position control if (use_wpnav_for_position_control()) { if (guided_mode != SubMode::WP) { wp_control_start(); } if (!wp_nav->set_wp_destination_loc(dest_loc)) { // failure to set destination can only be because of missing terrain data AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::FAILED_TO_SET_DESTINATION); // failure is propagated to GCS with NAK return false; } // set yaw state set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw); // log target copter.Log_Write_Guided_Position_Target(guided_mode, Vector3f(dest_loc.lat, dest_loc.lng, dest_loc.alt), (dest_loc.get_alt_frame() == Location::AltFrame::ABOVE_TERRAIN), Vector3f(), Vector3f()); send_notification = true; return true; } // if configured to use position controller for position control // ensure we are in position control mode if (guided_mode != SubMode::Pos) { pos_control_start(); } // set yaw state set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw); // set position target and zero velocity and acceleration Vector3f pos_target_f; bool terrain_alt; if (!wp_nav->get_vector_NEU(dest_loc, pos_target_f, terrain_alt)) { return false; } // initialise terrain following if needed if (terrain_alt) { // get current alt above terrain float origin_terr_offset; if (!wp_nav->get_terrain_offset(origin_terr_offset)) { // if we don't have terrain altitude then stop init(true); return false; } // convert origin to alt-above-terrain if necessary if (!guided_pos_terrain_alt) { // new destination is alt-above-terrain, previous destination was alt-above-ekf-origin pos_control->set_pos_offset_z_cm(origin_terr_offset); } } else { pos_control->set_pos_offset_z_cm(0.0); } guided_pos_target_cm = pos_target_f.topostype(); guided_pos_terrain_alt = terrain_alt; guided_vel_target_cms.zero(); guided_accel_target_cmss.zero(); update_time_ms = millis(); // log target copter.Log_Write_Guided_Position_Target(guided_mode, Vector3f(dest_loc.lat, dest_loc.lng, dest_loc.alt), guided_pos_terrain_alt, guided_vel_target_cms, guided_accel_target_cmss); send_notification = true; return true; } // set_velaccel - sets guided mode's target velocity and acceleration void ModeGuided::set_accel(const Vector3f& acceleration, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw, bool log_request) { // check we are in velocity control mode if (guided_mode != SubMode::Accel) { accel_control_start(); } // set yaw state set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw); // set velocity and acceleration targets and zero position guided_pos_target_cm.zero(); guided_pos_terrain_alt = false; guided_vel_target_cms.zero(); guided_accel_target_cmss = acceleration; update_time_ms = millis(); // log target if (log_request) { copter.Log_Write_Guided_Position_Target(guided_mode, guided_pos_target_cm.tofloat(), guided_pos_terrain_alt, guided_vel_target_cms, guided_accel_target_cmss); } } // set_velocity - sets guided mode's target velocity void ModeGuided::set_velocity(const Vector3f& velocity, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw, bool log_request) { set_velaccel(velocity, Vector3f(), use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw, log_request); } // set_velaccel - sets guided mode's target velocity and acceleration void ModeGuided::set_velaccel(const Vector3f& velocity, const Vector3f& acceleration, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw, bool log_request) { // check we are in velocity control mode if (guided_mode != SubMode::VelAccel) { velaccel_control_start(); } // set yaw state set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw); // set velocity and acceleration targets and zero position guided_pos_target_cm.zero(); guided_pos_terrain_alt = false; guided_vel_target_cms = velocity; guided_accel_target_cmss = acceleration; update_time_ms = millis(); // log target if (log_request) { copter.Log_Write_Guided_Position_Target(guided_mode, guided_pos_target_cm.tofloat(), guided_pos_terrain_alt, guided_vel_target_cms, guided_accel_target_cmss); } } // set_destination_posvel - set guided mode position and velocity target bool ModeGuided::set_destination_posvel(const Vector3f& destination, const Vector3f& velocity, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw) { return set_destination_posvelaccel(destination, velocity, Vector3f(), use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw); } // set_destination_posvelaccel - set guided mode position, velocity and acceleration target bool ModeGuided::set_destination_posvelaccel(const Vector3f& destination, const Vector3f& velocity, const Vector3f& acceleration, bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_yaw) { #if AP_FENCE_ENABLED // reject destination if outside the fence const Location dest_loc(destination, Location::AltFrame::ABOVE_ORIGIN); if (!copter.fence.check_destination_within_fence(dest_loc)) { AP::logger().Write_Error(LogErrorSubsystem::NAVIGATION, LogErrorCode::DEST_OUTSIDE_FENCE); // failure is propagated to GCS with NAK return false; } #endif // check we are in velocity control mode if (guided_mode != SubMode::PosVelAccel) { posvelaccel_control_start(); } // set yaw state set_yaw_state(use_yaw, yaw_cd, use_yaw_rate, yaw_rate_cds, relative_yaw); update_time_ms = millis(); guided_pos_target_cm = destination.topostype(); guided_pos_terrain_alt = false; guided_vel_target_cms = velocity; guided_accel_target_cmss = acceleration; // log target copter.Log_Write_Guided_Position_Target(guided_mode, guided_pos_target_cm.tofloat(), guided_pos_terrain_alt, guided_vel_target_cms, guided_accel_target_cmss); return true; } // returns true if GUIDED_OPTIONS param suggests SET_ATTITUDE_TARGET's "thrust" field should be interpreted as thrust instead of climb rate bool ModeGuided::set_attitude_target_provides_thrust() const { return ((copter.g2.guided_options.get() & uint32_t(Options::SetAttitudeTarget_ThrustAsThrust)) != 0); } // returns true if GUIDED_OPTIONS param specifies position should be controlled (when velocity and/or acceleration control is active) bool ModeGuided::stabilizing_pos_xy() const { return !((copter.g2.guided_options.get() & uint32_t(Options::DoNotStabilizePositionXY)) != 0); } // returns true if GUIDED_OPTIONS param specifies velocity should be controlled (when acceleration control is active) bool ModeGuided::stabilizing_vel_xy() const { return !((copter.g2.guided_options.get() & uint32_t(Options::DoNotStabilizeVelocityXY)) != 0); } // returns true if GUIDED_OPTIONS param specifies waypoint navigation should be used for position control (allow path planning to be used but updates must be slower) bool ModeGuided::use_wpnav_for_position_control() const { return ((copter.g2.guided_options.get() & uint32_t(Options::WPNavUsedForPosControl)) != 0); } // Sets guided's angular target submode: Using a rotation quaternion, angular velocity, and climbrate or thrust (depends on user option) // attitude_quat: IF zero: ang_vel (angular velocity) must be provided even if all zeroes // IF non-zero: attitude_control is performed using both the attitude quaternion and angular velocity // ang_vel: angular velocity (rad/s) // climb_rate_cms_or_thrust: represents either the climb_rate (cm/s) or thrust scaled from [0, 1], unitless // use_thrust: IF true: climb_rate_cms_or_thrust represents thrust // IF false: climb_rate_cms_or_thrust represents climb_rate (cm/s) void ModeGuided::set_angle(const Quaternion &attitude_quat, const Vector3f &ang_vel, float climb_rate_cms_or_thrust, bool use_thrust) { // check we are in velocity control mode if (guided_mode != SubMode::Angle) { angle_control_start(); } guided_angle_state.attitude_quat = attitude_quat; guided_angle_state.ang_vel = ang_vel; guided_angle_state.use_thrust = use_thrust; if (use_thrust) { guided_angle_state.thrust = climb_rate_cms_or_thrust; guided_angle_state.climb_rate_cms = 0.0f; } else { guided_angle_state.thrust = 0.0f; guided_angle_state.climb_rate_cms = climb_rate_cms_or_thrust; } guided_angle_state.update_time_ms = millis(); // convert quaternion to euler angles float roll_rad, pitch_rad, yaw_rad; attitude_quat.to_euler(roll_rad, pitch_rad, yaw_rad); // log target copter.Log_Write_Guided_Attitude_Target(guided_mode, roll_rad, pitch_rad, yaw_rad, ang_vel, guided_angle_state.thrust, guided_angle_state.climb_rate_cms * 0.01); } // takeoff_run - takeoff in guided mode // called by guided_run at 100hz or more void ModeGuided::takeoff_run() { auto_takeoff_run(); if (auto_takeoff_complete && !takeoff_complete) { takeoff_complete = true; #if LANDING_GEAR_ENABLED == ENABLED // optionally retract landing gear copter.landinggear.retract_after_takeoff(); #endif } } // pos_control_run - runs the guided position controller // called from guided_run void ModeGuided::pos_control_run() { // process pilot's yaw input float target_yaw_rate = 0; if (!copter.failsafe.radio && use_pilot_yaw()) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz()); if (!is_zero(target_yaw_rate)) { auto_yaw.set_mode(AUTO_YAW_HOLD); } } // if not armed set throttle to zero and exit immediately if (is_disarmed_or_landed()) { // do not spool down tradheli when on the ground with motor interlock enabled make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock()); return; } // calculate terrain adjustments float terr_offset = 0.0f; if (guided_pos_terrain_alt && !wp_nav->get_terrain_offset(terr_offset)) { // failure to set destination can only be because of missing terrain data copter.failsafe_terrain_on_event(); return; } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // send position and velocity targets to position controller guided_accel_target_cmss.zero(); guided_vel_target_cms.zero(); // stop rotating if no updates received within timeout_ms if (millis() - update_time_ms > get_timeout_ms()) { if ((auto_yaw.mode() == AUTO_YAW_RATE) || (auto_yaw.mode() == AUTO_YAW_ANGLE_RATE)) { auto_yaw.set_rate(0.0f); } } float pos_offset_z_buffer = 0.0; // Vertical buffer size in m if (guided_pos_terrain_alt) { pos_offset_z_buffer = MIN(copter.wp_nav->get_terrain_margin() * 100.0, 0.5 * fabsF(guided_pos_target_cm.z)); } pos_control->input_pos_xyz(guided_pos_target_cm, terr_offset, pos_offset_z_buffer); // run position controllers pos_control->update_xy_controller(); pos_control->update_z_controller(); // call attitude controller if (auto_yaw.mode() == AUTO_YAW_HOLD) { // roll & pitch from position controller, yaw rate from pilot attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), target_yaw_rate); } else if (auto_yaw.mode() == AUTO_YAW_RATE) { // roll & pitch from position controller, yaw rate from mavlink command or mission item attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), auto_yaw.rate_cds()); } else { // roll & pitch from position controller, yaw heading from GCS or auto_heading() attitude_control->input_thrust_vector_heading(pos_control->get_thrust_vector(), auto_yaw.yaw(), auto_yaw.rate_cds()); } } // velaccel_control_run - runs the guided velocity controller // called from guided_run void ModeGuided::accel_control_run() { // process pilot's yaw input float target_yaw_rate = 0; if (!copter.failsafe.radio && use_pilot_yaw()) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz()); if (!is_zero(target_yaw_rate)) { auto_yaw.set_mode(AUTO_YAW_HOLD); } } // if not armed set throttle to zero and exit immediately if (is_disarmed_or_landed()) { // do not spool down tradheli when on the ground with motor interlock enabled make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock()); return; } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // set velocity to zero and stop rotating if no updates received for 3 seconds uint32_t tnow = millis(); if (tnow - update_time_ms > get_timeout_ms()) { guided_vel_target_cms.zero(); guided_accel_target_cmss.zero(); if ((auto_yaw.mode() == AUTO_YAW_RATE) || (auto_yaw.mode() == AUTO_YAW_ANGLE_RATE)) { auto_yaw.set_rate(0.0f); } pos_control->input_vel_accel_xy(guided_vel_target_cms.xy(), guided_accel_target_cmss.xy(), false); pos_control->input_vel_accel_z(guided_vel_target_cms.z, guided_accel_target_cmss.z, false); } else { // update position controller with new target pos_control->input_accel_xy(guided_accel_target_cmss); if (!stabilizing_vel_xy()) { // set position and velocity errors to zero pos_control->stop_vel_xy_stabilisation(); } else if (!stabilizing_pos_xy()) { // set position errors to zero pos_control->stop_pos_xy_stabilisation(); } pos_control->input_accel_z(guided_accel_target_cmss.z); } // call velocity controller which includes z axis controller pos_control->update_xy_controller(); pos_control->update_z_controller(); // call attitude controller if (auto_yaw.mode() == AUTO_YAW_HOLD) { // roll & pitch from position controller, yaw rate from pilot attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), target_yaw_rate); } else if (auto_yaw.mode() == AUTO_YAW_RATE) { // roll & pitch from position controller, yaw rate from mavlink command or mission item attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), auto_yaw.rate_cds()); } else { // roll & pitch from position controller, yaw heading from GCS or auto_heading() attitude_control->input_thrust_vector_heading(pos_control->get_thrust_vector(), auto_yaw.yaw(), auto_yaw.rate_cds()); } } // velaccel_control_run - runs the guided velocity and acceleration controller // called from guided_run void ModeGuided::velaccel_control_run() { // process pilot's yaw input float target_yaw_rate = 0; if (!copter.failsafe.radio && use_pilot_yaw()) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz()); if (!is_zero(target_yaw_rate)) { auto_yaw.set_mode(AUTO_YAW_HOLD); } } // if not armed set throttle to zero and exit immediately if (is_disarmed_or_landed()) { // do not spool down tradheli when on the ground with motor interlock enabled make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock()); return; } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // set velocity to zero and stop rotating if no updates received for 3 seconds uint32_t tnow = millis(); if (tnow - update_time_ms > get_timeout_ms()) { guided_vel_target_cms.zero(); guided_accel_target_cmss.zero(); if ((auto_yaw.mode() == AUTO_YAW_RATE) || (auto_yaw.mode() == AUTO_YAW_ANGLE_RATE)) { auto_yaw.set_rate(0.0f); } } bool do_avoid = false; #if AC_AVOID_ENABLED // limit the velocity for obstacle/fence avoidance copter.avoid.adjust_velocity(guided_vel_target_cms, pos_control->get_pos_xy_p().kP(), pos_control->get_max_accel_xy_cmss(), pos_control->get_pos_z_p().kP(), pos_control->get_max_accel_z_cmss(), G_Dt); do_avoid = copter.avoid.limits_active(); #endif // update position controller with new target if (!stabilizing_vel_xy() && !do_avoid) { // set the current commanded xy vel to the desired vel guided_vel_target_cms.x = pos_control->get_vel_desired_cms().x; guided_vel_target_cms.y = pos_control->get_vel_desired_cms().y; } pos_control->input_vel_accel_xy(guided_vel_target_cms.xy(), guided_accel_target_cmss.xy(), false); if (!stabilizing_vel_xy() && !do_avoid) { // set position and velocity errors to zero pos_control->stop_vel_xy_stabilisation(); } else if (!stabilizing_pos_xy() && !do_avoid) { // set position errors to zero pos_control->stop_pos_xy_stabilisation(); } pos_control->input_vel_accel_z(guided_vel_target_cms.z, guided_accel_target_cmss.z, false); // call velocity controller which includes z axis controller pos_control->update_xy_controller(); pos_control->update_z_controller(); // call attitude controller if (auto_yaw.mode() == AUTO_YAW_HOLD) { // roll & pitch from position controller, yaw rate from pilot attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), target_yaw_rate); } else if (auto_yaw.mode() == AUTO_YAW_RATE) { // roll & pitch from position controller, yaw rate from mavlink command or mission item attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), auto_yaw.rate_cds()); } else { // roll & pitch from position controller, yaw heading from GCS or auto_heading() attitude_control->input_thrust_vector_heading(pos_control->get_thrust_vector(), auto_yaw.yaw(), auto_yaw.rate_cds()); } } // pause_control_run - runs the guided mode pause controller // called from guided_run void ModeGuided::pause_control_run() { // if not armed set throttle to zero and exit immediately if (is_disarmed_or_landed()) { // do not spool down tradheli when on the ground with motor interlock enabled make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock()); return; } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // set the horizontal velocity and acceleration targets to zero Vector2f vel_xy, accel_xy; pos_control->input_vel_accel_xy(vel_xy, accel_xy, false); // set the vertical velocity and acceleration targets to zero float vel_z = 0.0; pos_control->input_vel_accel_z(vel_z, 0.0, false); // call velocity controller which includes z axis controller pos_control->update_xy_controller(); pos_control->update_z_controller(); // call attitude controller attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), 0.0); } // posvelaccel_control_run - runs the guided position, velocity and acceleration controller // called from guided_run void ModeGuided::posvelaccel_control_run() { // process pilot's yaw input float target_yaw_rate = 0; if (!copter.failsafe.radio && use_pilot_yaw()) { // get pilot's desired yaw rate target_yaw_rate = get_pilot_desired_yaw_rate(channel_yaw->norm_input_dz()); if (!is_zero(target_yaw_rate)) { auto_yaw.set_mode(AUTO_YAW_HOLD); } } // if not armed set throttle to zero and exit immediately if (is_disarmed_or_landed()) { // do not spool down tradheli when on the ground with motor interlock enabled make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock()); return; } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // set velocity to zero and stop rotating if no updates received for 3 seconds uint32_t tnow = millis(); if (tnow - update_time_ms > get_timeout_ms()) { guided_vel_target_cms.zero(); guided_accel_target_cmss.zero(); if ((auto_yaw.mode() == AUTO_YAW_RATE) || (auto_yaw.mode() == AUTO_YAW_ANGLE_RATE)) { auto_yaw.set_rate(0.0f); } } // send position and velocity targets to position controller if (!stabilizing_vel_xy()) { // set the current commanded xy pos to the target pos and xy vel to the desired vel guided_pos_target_cm.x = pos_control->get_pos_target_cm().x; guided_pos_target_cm.y = pos_control->get_pos_target_cm().y; guided_vel_target_cms.x = pos_control->get_vel_desired_cms().x; guided_vel_target_cms.y = pos_control->get_vel_desired_cms().y; } else if (!stabilizing_pos_xy()) { // set the current commanded xy pos to the target pos guided_pos_target_cm.x = pos_control->get_pos_target_cm().x; guided_pos_target_cm.y = pos_control->get_pos_target_cm().y; } pos_control->input_pos_vel_accel_xy(guided_pos_target_cm.xy(), guided_vel_target_cms.xy(), guided_accel_target_cmss.xy(), false); if (!stabilizing_vel_xy()) { // set position and velocity errors to zero pos_control->stop_vel_xy_stabilisation(); } else if (!stabilizing_pos_xy()) { // set position errors to zero pos_control->stop_pos_xy_stabilisation(); } // guided_pos_target z-axis should never be a terrain altitude if (guided_pos_terrain_alt) { INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control); } float pz = guided_pos_target_cm.z; pos_control->input_pos_vel_accel_z(pz, guided_vel_target_cms.z, guided_accel_target_cmss.z, false); guided_pos_target_cm.z = pz; // run position controllers pos_control->update_xy_controller(); pos_control->update_z_controller(); // call attitude controller if (auto_yaw.mode() == AUTO_YAW_HOLD) { // roll & pitch from position controller, yaw rate from pilot attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), target_yaw_rate); } else if (auto_yaw.mode() == AUTO_YAW_RATE) { // roll & pitch from position controller, yaw rate from mavlink command or mission item attitude_control->input_thrust_vector_rate_heading(pos_control->get_thrust_vector(), auto_yaw.rate_cds()); } else { // roll & pitch from position controller, yaw heading from GCS or auto_heading() attitude_control->input_thrust_vector_heading(pos_control->get_thrust_vector(), auto_yaw.yaw(), auto_yaw.rate_cds()); } } // angle_control_run - runs the guided angle controller // called from guided_run void ModeGuided::angle_control_run() { float climb_rate_cms = 0.0f; if (!guided_angle_state.use_thrust) { // constrain climb rate climb_rate_cms = constrain_float(guided_angle_state.climb_rate_cms, -wp_nav->get_default_speed_down(), wp_nav->get_default_speed_up()); // get avoidance adjusted climb rate climb_rate_cms = get_avoidance_adjusted_climbrate(climb_rate_cms); } // check for timeout - set lean angles and climb rate to zero if no updates received for 3 seconds uint32_t tnow = millis(); if (tnow - guided_angle_state.update_time_ms > get_timeout_ms()) { guided_angle_state.attitude_quat.initialise(); guided_angle_state.ang_vel.zero(); climb_rate_cms = 0.0f; if (guided_angle_state.use_thrust) { // initialise vertical velocity controller pos_control->init_z_controller(); guided_angle_state.use_thrust = false; } } // interpret positive climb rate or thrust as triggering take-off const bool positive_thrust_or_climbrate = is_positive(guided_angle_state.use_thrust ? guided_angle_state.thrust : climb_rate_cms); if (motors->armed() && positive_thrust_or_climbrate) { copter.set_auto_armed(true); } // if not armed set throttle to zero and exit immediately if (!motors->armed() || !copter.ap.auto_armed || (copter.ap.land_complete && !positive_thrust_or_climbrate)) { // do not spool down tradheli when on the ground with motor interlock enabled make_safe_ground_handling(copter.is_tradheli() && motors->get_interlock()); return; } // TODO: use get_alt_hold_state // landed with positive desired climb rate, takeoff if (copter.ap.land_complete && (guided_angle_state.climb_rate_cms > 0.0f)) { zero_throttle_and_relax_ac(); motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); if (motors->get_spool_state() == AP_Motors::SpoolState::THROTTLE_UNLIMITED) { set_land_complete(false); pos_control->init_z_controller(); } return; } // set motors to full range motors->set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); // call attitude controller if (guided_angle_state.attitude_quat.is_zero()) { attitude_control->input_rate_bf_roll_pitch_yaw(ToDeg(guided_angle_state.ang_vel.x) * 100.0f, ToDeg(guided_angle_state.ang_vel.y) * 100.0f, ToDeg(guided_angle_state.ang_vel.z) * 100.0f); } else { attitude_control->input_quaternion(guided_angle_state.attitude_quat, guided_angle_state.ang_vel); } // call position controller if (guided_angle_state.use_thrust) { attitude_control->set_throttle_out(guided_angle_state.thrust, true, copter.g.throttle_filt); } else { pos_control->set_pos_target_z_from_climb_rate_cm(climb_rate_cms); pos_control->update_z_controller(); } } // helper function to set yaw state and targets void ModeGuided::set_yaw_state(bool use_yaw, float yaw_cd, bool use_yaw_rate, float yaw_rate_cds, bool relative_angle) { if (use_yaw && relative_angle) { auto_yaw.set_fixed_yaw(yaw_cd * 0.01f, 0.0f, 0, relative_angle); } else if (use_yaw && use_yaw_rate) { auto_yaw.set_yaw_angle_rate(yaw_cd * 0.01f, yaw_rate_cds * 0.01f); } else if (use_yaw && !use_yaw_rate) { auto_yaw.set_yaw_angle_rate(yaw_cd * 0.01f, 0.0f); } else if (use_yaw_rate) { auto_yaw.set_rate(yaw_rate_cds); } else { auto_yaw.set_mode_to_default(false); } } // returns true if pilot's yaw input should be used to adjust vehicle's heading bool ModeGuided::use_pilot_yaw(void) const { return (copter.g2.guided_options.get() & uint32_t(Options::IgnorePilotYaw)) == 0; } // Guided Limit code // limit_clear - clear/turn off guided limits void ModeGuided::limit_clear() { guided_limit.timeout_ms = 0; guided_limit.alt_min_cm = 0.0f; guided_limit.alt_max_cm = 0.0f; guided_limit.horiz_max_cm = 0.0f; } // limit_set - set guided timeout and movement limits void ModeGuided::limit_set(uint32_t timeout_ms, float alt_min_cm, float alt_max_cm, float horiz_max_cm) { guided_limit.timeout_ms = timeout_ms; guided_limit.alt_min_cm = alt_min_cm; guided_limit.alt_max_cm = alt_max_cm; guided_limit.horiz_max_cm = horiz_max_cm; } // limit_init_time_and_pos - initialise guided start time and position as reference for limit checking // only called from AUTO mode's auto_nav_guided_start function void ModeGuided::limit_init_time_and_pos() { // initialise start time guided_limit.start_time = AP_HAL::millis(); // initialise start position from current position guided_limit.start_pos = inertial_nav.get_position_neu_cm(); } // limit_check - returns true if guided mode has breached a limit // used when guided is invoked from the NAV_GUIDED_ENABLE mission command bool ModeGuided::limit_check() { // check if we have passed the timeout if ((guided_limit.timeout_ms > 0) && (millis() - guided_limit.start_time >= guided_limit.timeout_ms)) { return true; } // get current location const Vector3f& curr_pos = inertial_nav.get_position_neu_cm(); // check if we have gone below min alt if (!is_zero(guided_limit.alt_min_cm) && (curr_pos.z < guided_limit.alt_min_cm)) { return true; } // check if we have gone above max alt if (!is_zero(guided_limit.alt_max_cm) && (curr_pos.z > guided_limit.alt_max_cm)) { return true; } // check if we have gone beyond horizontal limit if (guided_limit.horiz_max_cm > 0.0f) { const float horiz_move = get_horizontal_distance_cm(guided_limit.start_pos.xy(), curr_pos.xy()); if (horiz_move > guided_limit.horiz_max_cm) { return true; } } // if we got this far we must be within limits return false; } const Vector3p &ModeGuided::get_target_pos() const { return guided_pos_target_cm; } const Vector3f& ModeGuided::get_target_vel() const { return guided_vel_target_cms; } const Vector3f& ModeGuided::get_target_accel() const { return guided_accel_target_cmss; } uint32_t ModeGuided::wp_distance() const { switch(guided_mode) { case SubMode::WP: return wp_nav->get_wp_distance_to_destination(); case SubMode::Pos: return get_horizontal_distance_cm(inertial_nav.get_position_xy_cm(), guided_pos_target_cm.tofloat().xy()); case SubMode::PosVelAccel: return pos_control->get_pos_error_xy_cm(); break; default: return 0; } } int32_t ModeGuided::wp_bearing() const { switch(guided_mode) { case SubMode::WP: return wp_nav->get_wp_bearing_to_destination(); case SubMode::Pos: return get_bearing_cd(inertial_nav.get_position_xy_cm(), guided_pos_target_cm.tofloat().xy()); case SubMode::PosVelAccel: return pos_control->get_bearing_to_target_cd(); break; case SubMode::TakeOff: case SubMode::Accel: case SubMode::VelAccel: case SubMode::Angle: // these do not have bearings return 0; } // compiler guarantees we don't get here return 0.0; } float ModeGuided::crosstrack_error() const { switch (guided_mode) { case SubMode::WP: return wp_nav->crosstrack_error(); case SubMode::Pos: case SubMode::TakeOff: case SubMode::Accel: case SubMode::VelAccel: case SubMode::PosVelAccel: return pos_control->crosstrack_error(); case SubMode::Angle: // no track to have a crosstrack to return 0; } // compiler guarantees we don't get here return 0; } // return guided mode timeout in milliseconds. Only used for velocity, acceleration, angle control, and angular rates uint32_t ModeGuided::get_timeout_ms() const { return MAX(copter.g2.guided_timeout, 0.1) * 1000; } // pause guide mode bool ModeGuided::pause() { _paused = true; return true; } // resume guided mode bool ModeGuided::resume() { _paused = false; return true; } #endif