#include "Copter.h" // return barometric altitude in centimeters void Copter::read_barometer(void) { barometer.update(); baro_alt = barometer.get_altitude() * 100.0f; motors->set_air_density_ratio(barometer.get_air_density_ratio()); } void Copter::init_rangefinder(void) { #if RANGEFINDER_ENABLED == ENABLED rangefinder.set_log_rfnd_bit(MASK_LOG_CTUN); rangefinder.init(ROTATION_PITCH_270); rangefinder_state.alt_cm_filt.set_cutoff_frequency(RANGEFINDER_WPNAV_FILT_HZ); rangefinder_state.enabled = rangefinder.has_orientation(ROTATION_PITCH_270); // upward facing range finder rangefinder_up_state.alt_cm_filt.set_cutoff_frequency(RANGEFINDER_WPNAV_FILT_HZ); rangefinder_up_state.enabled = rangefinder.has_orientation(ROTATION_PITCH_90); #endif } // return rangefinder altitude in centimeters void Copter::read_rangefinder(void) { #if RANGEFINDER_ENABLED == ENABLED rangefinder.update(); #if RANGEFINDER_TILT_CORRECTION == ENABLED const float tilt_correction = MAX(0.707f, ahrs.get_rotation_body_to_ned().c.z); #else const float tilt_correction = 1.0f; #endif // iterate through downward and upward facing lidar struct { RangeFinderState &state; enum Rotation orientation; } rngfnd[2] = { {rangefinder_state, ROTATION_PITCH_270}, {rangefinder_up_state, ROTATION_PITCH_90}}; for (uint8_t i=0; i < ARRAY_SIZE(rngfnd); i++) { // local variables to make accessing simpler RangeFinderState &rf_state = rngfnd[i].state; enum Rotation rf_orient = rngfnd[i].orientation; // update health rf_state.alt_healthy = ((rangefinder.status_orient(rf_orient) == RangeFinder::RangeFinder_Good) && (rangefinder.range_valid_count_orient(rf_orient) >= RANGEFINDER_HEALTH_MAX)); // tilt corrected but unfiltered, not glitch protected alt rf_state.alt_cm = tilt_correction * rangefinder.distance_cm_orient(rf_orient); // glitch handling. rangefinder readings more than RANGEFINDER_GLITCH_ALT_CM from the last good reading // are considered a glitch and glitch_count becomes non-zero // glitches clear after RANGEFINDER_GLITCH_NUM_SAMPLES samples in a row. // glitch_cleared_ms is set so surface tracking (or other consumers) can trigger a target reset const int32_t glitch_cm = rf_state.alt_cm - rf_state.alt_cm_glitch_protected; if (glitch_cm >= RANGEFINDER_GLITCH_ALT_CM) { rf_state.glitch_count = MAX(rf_state.glitch_count+1, 1); } else if (glitch_cm <= -RANGEFINDER_GLITCH_ALT_CM) { rf_state.glitch_count = MIN(rf_state.glitch_count-1, -1); } else { rf_state.glitch_count = 0; rf_state.alt_cm_glitch_protected = rf_state.alt_cm; } if (abs(rf_state.glitch_count) >= RANGEFINDER_GLITCH_NUM_SAMPLES) { // clear glitch and record time so consumers (i.e. surface tracking) can reset their target altitudes rf_state.glitch_count = 0; rf_state.alt_cm_glitch_protected = rf_state.alt_cm; rf_state.glitch_cleared_ms = AP_HAL::millis(); } // filter rangefinder altitude uint32_t now = AP_HAL::millis(); const bool timed_out = now - rf_state.last_healthy_ms > RANGEFINDER_TIMEOUT_MS; if (rf_state.alt_healthy) { if (timed_out) { // reset filter if we haven't used it within the last second rf_state.alt_cm_filt.reset(rf_state.alt_cm); } else { rf_state.alt_cm_filt.apply(rf_state.alt_cm, 0.05f); } rf_state.last_healthy_ms = now; } // send downward facing lidar altitude and health to waypoint navigation library if (rf_orient == ROTATION_PITCH_270) { if (rangefinder_state.alt_healthy || timed_out) { wp_nav->set_rangefinder_alt(rangefinder_state.enabled, rangefinder_state.alt_healthy, rangefinder_state.alt_cm_filt.get()); } } } #else // downward facing rangefinder rangefinder_state.enabled = false; rangefinder_state.alt_healthy = false; rangefinder_state.alt_cm = 0; // upward facing rangefinder rangefinder_up_state.enabled = false; rangefinder_up_state.alt_healthy = false; rangefinder_up_state.alt_cm = 0; #endif } // return true if rangefinder_alt can be used bool Copter::rangefinder_alt_ok() { return (rangefinder_state.enabled && rangefinder_state.alt_healthy); } // return true if rangefinder_alt can be used bool Copter::rangefinder_up_ok() { return (rangefinder_up_state.enabled && rangefinder_up_state.alt_healthy); } /* update RPM sensors */ void Copter::rpm_update(void) { #if RPM_ENABLED == ENABLED rpm_sensor.update(); if (rpm_sensor.enabled(0) || rpm_sensor.enabled(1)) { if (should_log(MASK_LOG_RCIN)) { logger.Write_RPM(rpm_sensor); } } #endif } // initialise optical flow sensor void Copter::init_optflow() { #if OPTFLOW == ENABLED // initialise optical flow sensor optflow.init(MASK_LOG_OPTFLOW); #endif // OPTFLOW == ENABLED } void Copter::compass_cal_update() { compass.cal_update(); if (hal.util->get_soft_armed()) { return; } static uint32_t compass_cal_stick_gesture_begin = 0; if (compass.is_calibrating()) { if (channel_yaw->get_control_in() < -4000 && channel_throttle->get_control_in() > 900) { compass.cancel_calibration_all(); } } else { bool stick_gesture_detected = compass_cal_stick_gesture_begin != 0 && !motors->armed() && channel_yaw->get_control_in() > 4000 && channel_throttle->get_control_in() > 900; uint32_t tnow = millis(); if (!stick_gesture_detected) { compass_cal_stick_gesture_begin = tnow; } else if (tnow-compass_cal_stick_gesture_begin > 1000*COMPASS_CAL_STICK_GESTURE_TIME) { #ifdef CAL_ALWAYS_REBOOT compass.start_calibration_all(true,true,COMPASS_CAL_STICK_DELAY,true); #else compass.start_calibration_all(true,true,COMPASS_CAL_STICK_DELAY,false); #endif } } } void Copter::accel_cal_update() { if (hal.util->get_soft_armed()) { return; } ins.acal_update(); // check if new trim values, and set them float trim_roll, trim_pitch; if(ins.get_new_trim(trim_roll, trim_pitch)) { ahrs.set_trim(Vector3f(trim_roll, trim_pitch, 0)); } #ifdef CAL_ALWAYS_REBOOT if (ins.accel_cal_requires_reboot()) { hal.scheduler->delay(1000); hal.scheduler->reboot(false); } #endif } // initialise proximity sensor void Copter::init_proximity(void) { #if PROXIMITY_ENABLED == ENABLED g2.proximity.init(); #endif } // init visual odometry sensor void Copter::init_visual_odom() { #if VISUAL_ODOMETRY_ENABLED == ENABLED g2.visual_odom.init(); #endif } // winch and wheel encoder initialisation void Copter::winch_init() { #if WINCH_ENABLED == ENABLED g2.wheel_encoder.init(); g2.winch.init(&g2.wheel_encoder); #endif } // winch and wheel encoder update void Copter::winch_update() { #if WINCH_ENABLED == ENABLED g2.wheel_encoder.update(); g2.winch.update(); #endif }