/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- // Code to detect a crash main ArduCopter code #ifndef CRASH_CHECK_ITERATIONS_MAX # define CRASH_CHECK_ITERATIONS_MAX 20 // 2 second (ie. 10 iterations at 10hz) inverted indicates a crash #endif #ifndef CRASH_CHECK_ANGLE_DEVIATION_CD # define CRASH_CHECK_ANGLE_DEVIATION_CD 2000 // 20 degrees beyond angle max is signal we are inverted #endif #ifndef CRASH_CHECK_ALT_CHANGE_LIMIT_CM # define CRASH_CHECK_ALT_CHANGE_LIMIT_CM 50 // baro altitude must not change by more than 50cm #endif // crash_check - disarms motors if a crash has been detected // crashes are detected by the vehicle being more than 20 degrees beyond it's angle limits continuously for more than 1 second // should be called at 10hz void crash_check() { static uint8_t inverted_count; // number of iterations we have been inverted static int32_t baro_alt_prev; #if PARACHUTE == ENABLED // check parachute parachute_check(); #endif // return immediately if motors are not armed or pilot's throttle is above zero if (!motors.armed() || (!ap.throttle_zero && !failsafe.radio)) { inverted_count = 0; return; } // return immediately if we are not in an angle stabilize flight mode or we are flipping if (control_mode == ACRO || control_mode == FLIP) { inverted_count = 0; return; } // check angles int32_t lean_max = aparm.angle_max + CRASH_CHECK_ANGLE_DEVIATION_CD; if (labs(ahrs.roll_sensor) > lean_max || labs(ahrs.pitch_sensor) > lean_max) { inverted_count++; // if we have just become inverted record the baro altitude if (inverted_count == 1) { baro_alt_prev = baro_alt; // exit if baro altitude change indicates we are moving (probably falling) }else if (labs(baro_alt - baro_alt_prev) > CRASH_CHECK_ALT_CHANGE_LIMIT_CM) { inverted_count = 0; return; // check if inverted for 2 seconds }else if (inverted_count >= CRASH_CHECK_ITERATIONS_MAX) { // log an error in the dataflash Log_Write_Error(ERROR_SUBSYSTEM_CRASH_CHECK, ERROR_CODE_CRASH_CHECK_CRASH); // send message to gcs gcs_send_text_P(SEVERITY_HIGH,PSTR("Crash: Disarming")); // disarm motors init_disarm_motors(); } }else{ // we are not inverted so reset counter inverted_count = 0; } } #if PARACHUTE == ENABLED // Code to detect a crash main ArduCopter code #ifndef PARACHUTE_CHECK_ITERATIONS_MAX # define PARACHUTE_CHECK_ITERATIONS_MAX 10 // 1 second (ie. 10 iterations at 10hz) of loss of control triggers the parachute #endif #ifndef PARACHUTE_CHECK_ANGLE_DEVIATION_CD # define PARACHUTE_CHECK_ANGLE_DEVIATION_CD 3000 // 30 degrees off from target indicates a loss of control #endif // parachute_check - disarms motors and triggers the parachute if serious loss of control has been detected // vehicle is considered to have a "serious loss of control" by the vehicle being more than 30 degrees off from the target roll and pitch angles continuously for 1 second // should be called at 10hz void parachute_check() { static uint8_t control_loss_count; // number of iterations we have been out of control static int32_t baro_alt_start; // exit immediately if parachute is not enabled if (!parachute.enabled()) { return; } // call update to give parachute a chance to move servo or relay back to off position parachute.update(); // return immediately if motors are not armed or pilot's throttle is above zero if (!motors.armed()) { control_loss_count = 0; return; } // return immediately if we are not in an angle stabilize flight mode or we are flipping if (control_mode == ACRO || control_mode == FLIP) { control_loss_count = 0; return; } // ensure we are flying if (ap.land_complete) { control_loss_count = 0; return; } // ensure the first control_loss event is from above the min altitude if (control_loss_count == 0 && parachute.alt_min() != 0 && (baro_alt < (uint32_t)parachute.alt_min() * 100)) { return; } // get desired lean angles const Vector3f& target_angle = attitude_control.angle_ef_targets(); // check roll and pitch angles if (labs(ahrs.roll_sensor - target_angle.x) > CRASH_CHECK_ANGLE_DEVIATION_CD || labs(ahrs.pitch_sensor - target_angle.y) > CRASH_CHECK_ANGLE_DEVIATION_CD) { control_loss_count++; // don't let control_loss_count get too high if (control_loss_count > PARACHUTE_CHECK_ITERATIONS_MAX) { control_loss_count = PARACHUTE_CHECK_ITERATIONS_MAX; } // record baro alt if we have just started losing control if (control_loss_count == 1) { baro_alt_start = baro_alt; // exit if baro altitude change indicates we are not falling }else if (baro_alt >= baro_alt_start) { control_loss_count = 0; return; // To-Do: add check that the vehicle is actually falling // check if loss of control for at least 1 second }else if (control_loss_count >= PARACHUTE_CHECK_ITERATIONS_MAX) { // reset control loss counter control_loss_count = 0; // log an error in the dataflash Log_Write_Error(ERROR_SUBSYSTEM_CRASH_CHECK, ERROR_CODE_CRASH_CHECK_LOSS_OF_CONTROL); // release parachute parachute_release(); } }else{ // we are not inverted so reset counter control_loss_count = 0; } } // parachute_release - trigger the release of the parachute, disarm the motors and notify the user static void parachute_release() { // send message to gcs and dataflash gcs_send_text_P(SEVERITY_HIGH,PSTR("Parachute: Released!")); Log_Write_Event(DATA_PARACHUTE_RELEASED); // disarm motors init_disarm_motors(); // release parachute parachute.release(); } // parachute_manual_release - trigger the release of the parachute, after performing some checks for pilot error // checks if the vehicle is landed static void parachute_manual_release() { // exit immediately if parachute is not enabled if (!parachute.enabled()) { return; } // do not release if we are landed or below the minimum altitude above home if (ap.land_complete || (parachute.alt_min() != 0 && (baro_alt < (uint32_t)parachute.alt_min() * 100))) { // warn user of reason for failure gcs_send_text_P(SEVERITY_HIGH,PSTR("Parachute: Too Low")); // log an error in the dataflash Log_Write_Error(ERROR_SUBSYSTEM_PARACHUTE, ERROR_CODE_PARACHUTE_TOO_LOW); return; } // if we get this far release parachute parachute_release(); } #endif // PARACHUTE == ENABLED