AP_Airspeed: added auto-calibration support

This uses a Kalman filter to calculate the right ARSPD_RATIO at runtime

Pair-Programmed-With: Paul Riseborough <p_riseborough@live.com.au>
This commit is contained in:
Andrew Tridgell 2013-07-20 08:14:58 +10:00
parent 53b1b9b575
commit 893d2da6f6
4 changed files with 302 additions and 2 deletions

View File

@ -70,6 +70,12 @@ const AP_Param::GroupInfo AP_Airspeed::var_info[] PROGMEM = {
// @User: Advanced // @User: Advanced
AP_GROUPINFO("PIN", 4, AP_Airspeed, _pin, ARSPD_DEFAULT_PIN), AP_GROUPINFO("PIN", 4, AP_Airspeed, _pin, ARSPD_DEFAULT_PIN),
// @Param: AUTOCAL
// @DisplayName: Automatic airspeed ratio calibration
// @Description: If this is enabled then the APM will automatically adjust the ARSPD_RATIO during flight, based upon an estimation filter using ground speed and true airspeed. The automatic calibration will save the new ratio to EEPROM every 2 minutes if it changes by more than 5%
// @User: Advanced
AP_GROUPINFO("AUTOCAL", 5, AP_Airspeed, _autocal, 0),
AP_GROUPEND AP_GROUPEND
}; };
@ -105,6 +111,10 @@ void AP_Airspeed::init()
} }
#endif #endif
_source = hal.analogin->channel(_pin); _source = hal.analogin->channel(_pin);
_calibration.init(_ratio);
_last_saved_ratio = _ratio;
_counter = 0;
} }
// read the airspeed sensor // read the airspeed sensor

View File

@ -7,11 +7,35 @@
#include <AP_HAL.h> #include <AP_HAL.h>
#include <AP_Param.h> #include <AP_Param.h>
class Airspeed_Calibration {
public:
// constructor
Airspeed_Calibration(void);
// initialise the calibration
void init(float initial_ratio);
// take current airspeed in m/s and ground speed vector and return
// new scaling factor
float update(float airspeed, const Vector3f &vg);
private:
// state of kalman filter for airspeed ratio estimation
Matrix3f P; // covarience matrix
const float Q0; // process noise matrix top left and middle element
const float Q1; // process noise matrix bottom right element
Vector3f state; // state vector
const float DT; // time delta
};
class AP_Airspeed class AP_Airspeed
{ {
public: public:
// constructor // constructor
AP_Airspeed() : _ets_fd(-1) { AP_Airspeed() :
_ets_fd(-1)
{
AP_Param::setup_object_defaults(this, var_info); AP_Param::setup_object_defaults(this, var_info);
}; };
@ -69,6 +93,15 @@ public:
_airspeed = airspeed; _airspeed = airspeed;
} }
// return the differential pressure in Pascal for the last
// airspeed reading. Used by the calibration code
float get_differential_pressure(void) const {
return max(_last_pressure - _offset, 0);
}
// update airspeed ratio calibration
void update_calibration(Vector3f vground, float EAS2TAS);
static const struct AP_Param::GroupInfo var_info[]; static const struct AP_Param::GroupInfo var_info[];
private: private:
@ -78,14 +111,19 @@ private:
AP_Int8 _use; AP_Int8 _use;
AP_Int8 _enable; AP_Int8 _enable;
AP_Int8 _pin; AP_Int8 _pin;
AP_Int8 _autocal;
float _raw_airspeed; float _raw_airspeed;
float _airspeed; float _airspeed;
int _ets_fd; int _ets_fd;
float _last_pressure; float _last_pressure;
Airspeed_Calibration _calibration;
float _last_saved_ratio;
uint8_t _counter;
// return raw differential pressure in Pascal // return raw differential pressure in Pascal
float get_pressure(void); float get_pressure(void);
}; };
#endif // __AP_AIRSPEED_H__ #endif // __AP_AIRSPEED_H__

View File

@ -0,0 +1,130 @@
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* auto_calibration.cpp - airspeed auto calibration
* Algorithm by Paul Riseborough
*
*/
#include <AP_HAL.h>
#include <AP_Math.h>
#include <AP_Common.h>
#include <AP_Airspeed.h>
extern const AP_HAL::HAL& hal;
// constructor - fill in all the initial values
Airspeed_Calibration::Airspeed_Calibration() :
P(100, 0, 0,
0, 100, 0,
0, 0, 0.000001f),
Q0(0.01f),
Q1(0.000001f),
state(0, 0, 0),
DT(1)
{
}
/*
initialise the ratio
*/
void Airspeed_Calibration::init(float initial_ratio)
{
state.z = 1.0 / sqrtf(initial_ratio);
}
/*
update the state of the airspeed calibration - needs to be called
once a second
On an AVR2560 this costs 1.9 milliseconds per call
*/
float Airspeed_Calibration::update(float airspeed, const Vector3f &vg)
{
// Perform the covariance prediction
// Q is a diagonal matrix so only need to add three terms in
// C code implementation
// P = P + Q;
P.a.x += Q0;
P.b.y += Q0;
P.c.z += Q1;
// Perform the predicted measurement using the current state estimates
// No state prediction required because states are assumed to be time
// invariant plus process noise
// Ignore vertical wind component
float TAS_pred = state.z * sqrtf(sq(vg.x - state.x) + sq(vg.y - state.y) + sq(vg.z));
float TAS_mea = airspeed;
// Calculate the observation Jacobian H_TAS
float SH1 = sq(vg.y - state.y) + sq(vg.x - state.x);
if (SH1 < 0.000001f) {
// avoid division by a small number
return state.z;
}
float SH2 = 1/sqrt(SH1);
// observation Jacobian
Vector3f H_TAS(
-(state.z*SH2*(2*vg.x - 2*state.x))/2,
-(state.z*SH2*(2*vg.y - 2*state.y))/2,
1/SH2);
// Calculate the fusion innovaton covariance assuming a TAS measurement
// noise of 1.0 m/s
// S = H_TAS*P*H_TAS' + 1.0; % [1 x 3] * [3 x 3] * [3 x 1] + [1 x 1]
Vector3f PH = P * H_TAS;
float S = H_TAS * PH + 1.0f;
// Calculate the Kalman gain
// [3 x 3] * [3 x 1] / [1 x 1]
Vector3f KG = PH / S;
// Update the states
state += KG*(TAS_mea - TAS_pred); // [3 x 1] + [3 x 1] * [1 x 1]
// Update the covariance matrix
Vector3f HP2 = H_TAS * P;
P -= KG.mul_rowcol(HP2);
// force symmetry on the covariance matrix - necessary due to rounding
// errors
// Implementation will also need a further check to prevent diagonal
// terms becoming negative due to rounding errors
// This step can be made more efficient by excluding diagonal terms
// (would reduce processing by 1/3)
P = (P + P.transpose()) * 0.5f; // [1 x 1] * ( [3 x 3] + [3 x 3])
return state.z;
}
/*
called once a second to do calibration update
*/
void AP_Airspeed::update_calibration(Vector3f vground, float EAS2TAS)
{
if (!_autocal) {
// auto-calibration not enabled
return;
}
// calculate true airspeed, assuming a ratio of 1.0
float airspeed = sqrtf(get_differential_pressure()) * EAS2TAS;
float ratio = _calibration.update(airspeed, vground);
if (isnan(ratio) || isinf(ratio)) {
return;
}
// this constrains the resulting ratio to between 1.5 and 3
ratio = constrain_float(ratio, 0.577f, 0.816f);
_ratio.set(1/sq(ratio));
if (_counter > 60) {
if (_last_saved_ratio < 1.05f*_ratio ||
_last_saved_ratio < 0.95f*_ratio) {
_ratio.save();
_last_saved_ratio = _ratio;
_counter = 0;
}
} else {
_counter++;
}
}

View File

@ -0,0 +1,122 @@
% Implementation of a simple 3-state EKF that can identify the scale
% factor that needs to be applied to a true airspeed measurement
% Paul Riseborough 27 June 2013
% Inputs:
% Measured true airsped (m/s)
clear all;
% Define wind speed used for truth model
vwn_truth = 4.0;
vwe_truth = 3.0;
vwd_truth = -0.5; % convection can produce values of up to 1.5 m/s, however
% average will zero over longer periods at lower altitudes
% Slope lift will be persistent
% Define airspeed scale factor used for truth model
K_truth = 1.2;
% Use a 1 second time step
DT = 1.0;
% Define the initial state error covariance matrix
% Assume initial wind uncertainty of 10 m/s and scale factor uncertainty of
% 0.2
P = diag([10^2 10^2 0.001^2]);
% Define state error growth matrix assuming wind changes at a rate of 0.1
% m/s/s and scale factor drifts at a rate of 0.001 per second
Q = diag([0.1^2 0.1^2 0.001^2])*DT^2;
% Define the initial state matrix assuming zero wind and a scale factor of
% 1.0
x = [0;0;1.0];
for i = 1:1000
%% Calculate truth values
% calculate ground velocity by simulating a wind relative
% circular path of of 60m radius and 16 m/s airspeed
time = i*DT;
radius = 60;
TAS_truth = 16;
vwnrel_truth = TAS_truth*cos(TAS_truth*time/radius);
vwerel_truth = TAS_truth*sin(TAS_truth*time/radius);
vwdrel_truth = 0.0;
vgn_truth = vwnrel_truth + vwn_truth;
vge_truth = vwerel_truth + vwe_truth;
vgd_truth = vwdrel_truth + vwd_truth;
% calculate measured ground velocity and airspeed, adding some noise and
% adding a scale factor to the airspeed measurement.
vgn_mea = vgn_truth + 0.1*rand;
vge_mea = vge_truth + 0.1*rand;
vgd_mea = vgd_truth + 0.1*rand;
TAS_mea = K_truth * TAS_truth + 0.5*rand;
%% Perform filter processing
% This benefits from a matrix library that can handle up to 3x3
% matrices
% Perform the covariance prediction
% Q is a diagonal matrix so only need to add three terms in
% C code implementation
P = P + Q;
% Perform the predicted measurement using the current state estimates
% No state prediction required because states are assumed to be time
% invariant plus process noise
% Ignore vertical wind component
TAS_pred = x(3) * sqrt((vgn_mea - x(1))^2 + (vge_mea - x(2))^2 + vgd_mea^2);
% Calculate the observation Jacobian H_TAS
SH1 = (vge_mea - x(2))^2 + (vgn_mea - x(1))^2;
SH2 = 1/sqrt(SH1);
H_TAS = zeros(1,3);
H_TAS(1,1) = -(x(3)*SH2*(2*vgn_mea - 2*x(1)))/2;
H_TAS(1,2) = -(x(3)*SH2*(2*vge_mea - 2*x(2)))/2;
H_TAS(1,3) = 1/SH2;
% Calculate the fusion innovaton covariance assuming a TAS measurement
% noise of 1.0 m/s
S = H_TAS*P*H_TAS' + 1.0; % [1 x 3] * [3 x 3] * [3 x 1] + [1 x 1]
% Calculate the Kalman gain
KG = P*H_TAS'/S; % [3 x 3] * [3 x 1] / [1 x 1]
% Update the states
x = x + KG*(TAS_mea - TAS_pred); % [3 x 1] + [3 x 1] * [1 x 1]
% Update the covariance matrix
P = P - KG*H_TAS*P; % [3 x 3] *
% force symmetry on the covariance matrix - necessary due to rounding
% errors
% Implementation will also need a further check to prevent diagonal
% terms becoming negative due to rounding errors
% This step can be made more efficient by excluding diagonal terms
% (would reduce processing by 1/3)
P = 0.5*(P + P'); % [1 x 1] * ( [3 x 3] + [3 x 3])
%% Store results
output(i,:) = [time,x(1),x(2),x(3),vwn_truth,vwe_truth,K_truth];
end
%% Plot output
figure;
subplot(3,1,1);plot(output(:,1),[output(:,2),output(:,5)]);
ylabel('Wind Vel North (m/s)');
xlabel('time (sec)');
grid on;
subplot(3,1,2);plot(output(:,1),[output(:,3),output(:,6)]);
ylabel('Wind Vel East (m/s)');
xlabel('time (sec)');
grid on;
subplot(3,1,3);plot(output(:,1),[output(:,4),output(:,7)]);
ylim([0 1.5]);
ylabel('Airspeed scale factor correction');
xlabel('time (sec)');
grid on;