diff --git a/ArduCopter/motors_octa_quad.pde b/ArduCopter/motors_octa_quad.pde index efe95707ee..a8c4331ee0 100644 --- a/ArduCopter/motors_octa_quad.pde +++ b/ArduCopter/motors_octa_quad.pde @@ -5,8 +5,8 @@ static void init_motors_out() { #if INSTANT_PWM == 0 - APM_RC.SetFastOutputChannels( _BV(CH_1) | _BV(CH_2) | _BV(CH_3) | _BV(CH_4) - | _BV(CH_7) | _BV(CH_8) | _BV(CH_10) | _BV(CH_11) ); + APM_RC.SetFastOutputChannels( _BV(MOT_1) | _BV(MOT_2) | _BV(MOT_3) | _BV(MOT_4) + | _BV(MOT_5) | _BV(MOT_6) | _BV(MOT_7) | _BV(MOT_8) ); #endif } @@ -32,20 +32,20 @@ static void output_motors_armed() pitch_out = (float)g.rc_2.pwm_out * .707; // Front Left - motor_out[CH_7] = ((g.rc_3.radio_out * g.top_bottom_ratio) + roll_out + pitch_out); // CCW TOP - motor_out[CH_8] = g.rc_3.radio_out + roll_out + pitch_out; // CW + motor_out[MOT_5] = ((g.rc_3.radio_out * g.top_bottom_ratio) + roll_out + pitch_out); // CCW TOP + motor_out[MOT_6] = g.rc_3.radio_out + roll_out + pitch_out; // CW // Front Right - motor_out[CH_10] = ((g.rc_3.radio_out * g.top_bottom_ratio) - roll_out + pitch_out); // CCW TOP - motor_out[CH_11] = g.rc_3.radio_out - roll_out + pitch_out; // CW + motor_out[MOT_7] = ((g.rc_3.radio_out * g.top_bottom_ratio) - roll_out + pitch_out); // CCW TOP + motor_out[MOT_8] = g.rc_3.radio_out - roll_out + pitch_out; // CW // Back Left - motor_out[CH_3] = ((g.rc_3.radio_out * g.top_bottom_ratio) + roll_out - pitch_out); // CCW TOP - motor_out[CH_4] = g.rc_3.radio_out + roll_out - pitch_out; // CW + motor_out[MOT_3] = ((g.rc_3.radio_out * g.top_bottom_ratio) + roll_out - pitch_out); // CCW TOP + motor_out[MOT_4] = g.rc_3.radio_out + roll_out - pitch_out; // CW // Back Right - motor_out[CH_1] = ((g.rc_3.radio_out * g.top_bottom_ratio) - roll_out - pitch_out); // CCW TOP - motor_out[CH_2] = g.rc_3.radio_out - roll_out - pitch_out; // CW + motor_out[MOT_1] = ((g.rc_3.radio_out * g.top_bottom_ratio) - roll_out - pitch_out); // CCW TOP + motor_out[MOT_2] = g.rc_3.radio_out - roll_out - pitch_out; // CW @@ -54,71 +54,71 @@ static void output_motors_armed() pitch_out = g.rc_2.pwm_out; // Left - motor_out[CH_7] = (g.rc_3.radio_out * g.top_bottom_ratio) - roll_out; // CCW TOP - motor_out[CH_8] = g.rc_3.radio_out - roll_out; // CW + motor_out[MOT_5] = (g.rc_3.radio_out * g.top_bottom_ratio) - roll_out; // CCW TOP + motor_out[MOT_6] = g.rc_3.radio_out - roll_out; // CW // Right - motor_out[CH_1] = (g.rc_3.radio_out * g.top_bottom_ratio) + roll_out; // CCW TOP - motor_out[CH_2] = g.rc_3.radio_out + roll_out; // CW + motor_out[MOT_1] = (g.rc_3.radio_out * g.top_bottom_ratio) + roll_out; // CCW TOP + motor_out[MOT_2] = g.rc_3.radio_out + roll_out; // CW // Front - motor_out[CH_10] = (g.rc_3.radio_out * g.top_bottom_ratio) + pitch_out; // CCW TOP - motor_out[CH_11] = g.rc_3.radio_out + pitch_out; // CW + motor_out[MOT_7] = (g.rc_3.radio_out * g.top_bottom_ratio) + pitch_out; // CCW TOP + motor_out[MOT_8] = g.rc_3.radio_out + pitch_out; // CW // Back - motor_out[CH_3] = (g.rc_3.radio_out * g.top_bottom_ratio) - pitch_out; // CCW TOP - motor_out[CH_4] = g.rc_3.radio_out - pitch_out; // CW + motor_out[MOT_3] = (g.rc_3.radio_out * g.top_bottom_ratio) - pitch_out; // CCW TOP + motor_out[MOT_4] = g.rc_3.radio_out - pitch_out; // CW } // Yaw - motor_out[CH_1] += g.rc_4.pwm_out; // CCW - motor_out[CH_3] += g.rc_4.pwm_out; // CCW - motor_out[CH_7] += g.rc_4.pwm_out; // CCW - motor_out[CH_10] += g.rc_4.pwm_out; // CCW + motor_out[MOT_1] += g.rc_4.pwm_out; // CCW + motor_out[MOT_3] += g.rc_4.pwm_out; // CCW + motor_out[MOT_5] += g.rc_4.pwm_out; // CCW + motor_out[MOT_7] += g.rc_4.pwm_out; // CCW - motor_out[CH_2] -= g.rc_4.pwm_out; // CW - motor_out[CH_4] -= g.rc_4.pwm_out; // CW - motor_out[CH_8] -= g.rc_4.pwm_out; // CW - motor_out[CH_11] -= g.rc_4.pwm_out; // CW + motor_out[MOT_2] -= g.rc_4.pwm_out; // CW + motor_out[MOT_4] -= g.rc_4.pwm_out; // CW + motor_out[MOT_6] -= g.rc_4.pwm_out; // CW + motor_out[MOT_8] -= g.rc_4.pwm_out; // CW // TODO add stability patch - motor_out[CH_1] = min(motor_out[CH_1], out_max); - motor_out[CH_2] = min(motor_out[CH_2], out_max); - motor_out[CH_3] = min(motor_out[CH_3], out_max); - motor_out[CH_4] = min(motor_out[CH_4], out_max); - motor_out[CH_7] = min(motor_out[CH_7], out_max); - motor_out[CH_8] = min(motor_out[CH_8], out_max); - motor_out[CH_10] = min(motor_out[CH_10], out_max); - motor_out[CH_11] = min(motor_out[CH_11], out_max); + motor_out[MOT_1] = min(motor_out[MOT_1], out_max); + motor_out[MOT_2] = min(motor_out[MOT_2], out_max); + motor_out[MOT_3] = min(motor_out[MOT_3], out_max); + motor_out[MOT_4] = min(motor_out[MOT_4], out_max); + motor_out[MOT_5] = min(motor_out[MOT_5], out_max); + motor_out[MOT_6] = min(motor_out[MOT_6], out_max); + motor_out[MOT_7] = min(motor_out[MOT_7], out_max); + motor_out[MOT_8] = min(motor_out[MOT_8], out_max); // limit output so motors don't stop - motor_out[CH_1] = max(motor_out[CH_1], out_min); - motor_out[CH_2] = max(motor_out[CH_2], out_min); - motor_out[CH_3] = max(motor_out[CH_3], out_min); - motor_out[CH_4] = max(motor_out[CH_4], out_min); - motor_out[CH_7] = max(motor_out[CH_7], out_min); - motor_out[CH_8] = max(motor_out[CH_8], out_min); - motor_out[CH_10] = max(motor_out[CH_10], out_min); - motor_out[CH_11] = max(motor_out[CH_11], out_min); + motor_out[MOT_1] = max(motor_out[MOT_1], out_min); + motor_out[MOT_2] = max(motor_out[MOT_2], out_min); + motor_out[MOT_3] = max(motor_out[MOT_3], out_min); + motor_out[MOT_4] = max(motor_out[MOT_4], out_min); + motor_out[MOT_5] = max(motor_out[MOT_5], out_min); + motor_out[MOT_6] = max(motor_out[MOT_6], out_min); + motor_out[MOT_7] = max(motor_out[MOT_7], out_min); + motor_out[MOT_8] = max(motor_out[MOT_8], out_min); #if CUT_MOTORS == ENABLED // if we are not sending a throttle output, we cut the motors if(g.rc_3.servo_out == 0){ - motor_out[CH_1] = g.rc_3.radio_min; - motor_out[CH_2] = g.rc_3.radio_min; - motor_out[CH_3] = g.rc_3.radio_min; - motor_out[CH_4] = g.rc_3.radio_min; - motor_out[CH_7] = g.rc_3.radio_min; - motor_out[CH_8] = g.rc_3.radio_min; - motor_out[CH_10] = g.rc_3.radio_min; - motor_out[CH_11] = g.rc_3.radio_min; + motor_out[MOT_1] = g.rc_3.radio_min; + motor_out[MOT_2] = g.rc_3.radio_min; + motor_out[MOT_3] = g.rc_3.radio_min; + motor_out[MOT_4] = g.rc_3.radio_min; + motor_out[MOT_5] = g.rc_3.radio_min; + motor_out[MOT_6] = g.rc_3.radio_min; + motor_out[MOT_7] = g.rc_3.radio_min; + motor_out[MOT_8] = g.rc_3.radio_min; } #endif // this filter slows the acceleration of motors vs the deceleration // Idea by Denny Rowland to help with his Yaw issue - for(int8_t m = 0; i <= 8; m++ ) { + for(int8_t m = 0; m <= 8; m++ ) { int i = ch_of_mot(m); if(motor_filtered[i] < motor_out[i]){ motor_filtered[i] = (motor_out[i] + motor_filtered[i]) / 2; @@ -128,14 +128,14 @@ static void output_motors_armed() } } - APM_RC.OutputCh(CH_1, motor_filtered[CH_1]); - APM_RC.OutputCh(CH_2, motor_filtered[CH_2]); - APM_RC.OutputCh(CH_3, motor_filtered[CH_3]); - APM_RC.OutputCh(CH_4, motor_filtered[CH_4]); - APM_RC.OutputCh(CH_7, motor_filtered[CH_7]); - APM_RC.OutputCh(CH_8, motor_filtered[CH_8]); - APM_RC.OutputCh(CH_10, motor_filtered[CH_10]); - APM_RC.OutputCh(CH_11, motor_filtered[CH_11]); + APM_RC.OutputCh(MOT_1, motor_filtered[MOT_1]); + APM_RC.OutputCh(MOT_2, motor_filtered[MOT_2]); + APM_RC.OutputCh(MOT_3, motor_filtered[MOT_3]); + APM_RC.OutputCh(MOT_4, motor_filtered[MOT_4]); + APM_RC.OutputCh(MOT_5, motor_filtered[MOT_5]); + APM_RC.OutputCh(MOT_6, motor_filtered[MOT_6]); + APM_RC.OutputCh(MOT_7, motor_filtered[MOT_7]); + APM_RC.OutputCh(MOT_8, motor_filtered[MOT_8]); #if INSTANT_PWM == 1 // InstantPWM @@ -159,48 +159,48 @@ static void output_motors_disarmed() } // Send commands to motors - APM_RC.OutputCh(CH_1, g.rc_3.radio_min); - APM_RC.OutputCh(CH_2, g.rc_3.radio_min); - APM_RC.OutputCh(CH_3, g.rc_3.radio_min); - APM_RC.OutputCh(CH_4, g.rc_3.radio_min); - APM_RC.OutputCh(CH_7, g.rc_3.radio_min); - APM_RC.OutputCh(CH_8, g.rc_3.radio_min); - APM_RC.OutputCh(CH_10, g.rc_3.radio_min); - APM_RC.OutputCh(CH_11, g.rc_3.radio_min); + APM_RC.OutputCh(MOT_1, g.rc_3.radio_min); + APM_RC.OutputCh(MOT_2, g.rc_3.radio_min); + APM_RC.OutputCh(MOT_3, g.rc_3.radio_min); + APM_RC.OutputCh(MOT_4, g.rc_3.radio_min); + APM_RC.OutputCh(MOT_5, g.rc_3.radio_min); + APM_RC.OutputCh(MOT_6, g.rc_3.radio_min); + APM_RC.OutputCh(MOT_7, g.rc_3.radio_min); + APM_RC.OutputCh(MOT_8, g.rc_3.radio_min); } static void output_motor_test() { - APM_RC.OutputCh(CH_8, g.rc_3.radio_min); - APM_RC.OutputCh(CH_10, g.rc_3.radio_min + 100); + APM_RC.OutputCh(MOT_6, g.rc_3.radio_min); + APM_RC.OutputCh(MOT_7, g.rc_3.radio_min + 100); delay(1000); - APM_RC.OutputCh(CH_10, g.rc_3.radio_min); - APM_RC.OutputCh(CH_11, g.rc_3.radio_min + 100); + APM_RC.OutputCh(MOT_7, g.rc_3.radio_min); + APM_RC.OutputCh(MOT_8, g.rc_3.radio_min + 100); delay(1000); - APM_RC.OutputCh(CH_11, g.rc_3.radio_min); - APM_RC.OutputCh(CH_1, g.rc_3.radio_min + 100); + APM_RC.OutputCh(MOT_8, g.rc_3.radio_min); + APM_RC.OutputCh(MOT_1, g.rc_3.radio_min + 100); delay(1000); - APM_RC.OutputCh(CH_1, g.rc_3.radio_min); - APM_RC.OutputCh(CH_2, g.rc_3.radio_min + 100); + APM_RC.OutputCh(MOT_1, g.rc_3.radio_min); + APM_RC.OutputCh(MOT_2, g.rc_3.radio_min + 100); delay(1000); - APM_RC.OutputCh(CH_2, g.rc_3.radio_min); - APM_RC.OutputCh(CH_3, g.rc_3.radio_min + 100); + APM_RC.OutputCh(MOT_2, g.rc_3.radio_min); + APM_RC.OutputCh(MOT_3, g.rc_3.radio_min + 100); delay(1000); - APM_RC.OutputCh(CH_3, g.rc_3.radio_min); - APM_RC.OutputCh(CH_4, g.rc_3.radio_min + 100); + APM_RC.OutputCh(MOT_3, g.rc_3.radio_min); + APM_RC.OutputCh(MOT_4, g.rc_3.radio_min + 100); delay(1000); - APM_RC.OutputCh(CH_4, g.rc_3.radio_min); - APM_RC.OutputCh(CH_7, g.rc_3.radio_min + 100); + APM_RC.OutputCh(MOT_4, g.rc_3.radio_min); + APM_RC.OutputCh(MOT_5, g.rc_3.radio_min + 100); delay(1000); - APM_RC.OutputCh(CH_7, g.rc_3.radio_min); - APM_RC.OutputCh(CH_8, g.rc_3.radio_min + 100); + APM_RC.OutputCh(MOT_5, g.rc_3.radio_min); + APM_RC.OutputCh(MOT_6, g.rc_3.radio_min + 100); delay(1000); }