diff --git a/libraries/AP_DCM/AP_DCM.cpp b/libraries/AP_DCM/AP_DCM.cpp index 0e0aaac080..954f79767f 100644 --- a/libraries/AP_DCM/AP_DCM.cpp +++ b/libraries/AP_DCM/AP_DCM.cpp @@ -104,7 +104,7 @@ AP_DCM::matrix_update(float _G_Dt) _omega_integ_corr = _gyro_vector + _omega_I; // Equation 16, adding proportional and integral correction terms - _omega = _omega_integ_corr + _omega_P; + _omega = _omega_integ_corr + _omega_P + _omega_yaw_P; // this is an expansion of the DCM matrix multiply (equation // 17), with known zero elements removed and the matrix @@ -165,13 +165,12 @@ AP_DCM::matrix_reset(bool recover_eulers) } // reset the integration terms - _omega_I.x = 0.0f; - _omega_I.y = 0.0f; - _omega_I.z = 0.0f; - _omega_P = _omega_I; - _omega_integ_corr = _omega_I; - _omega_smoothed = _omega_I; - _omega = _omega_I; + _omega_I.zero(); + _omega_P.zero(); + _omega_yaw_P.zero(); + _omega_integ_corr.zero(); + _omega_smoothed.zero(); + _omega.zero(); // if the caller wants us to try to recover to the current // attitude then calculate the dcm matrix from the current @@ -316,6 +315,9 @@ AP_DCM::normalize(void) // gyro error. The _omega_P value is what pulls our attitude solution // back towards the reference vector quickly. The _omega_I term is an // attempt to learn the long term drift rate of the gyros. +// +// This function also updates _omega_yaw_P with a yaw correction term +// from our yaw reference vector void AP_DCM::drift_correction(float deltat) { @@ -357,31 +359,39 @@ AP_DCM::drift_correction(float deltat) accel.z = -sqrt(zsquared); } + // calculate the error, in m/2^2, between the attitude + // implied by the accelerometers and the attitude + // in the current DCM matrix error = _dcm_matrix.c % accel; - // error is in m/s^2 units - // Limit max error to limit max omega_P and omega_I + // error from the above is in m/s^2 units. + + // Limit max error to limit the effect of noisy values + // on the algorithm. This limits the error to about 11 + // degrees error_norm = error.length(); if (error_norm > 2) { error *= (2 / error_norm); } - // scale the error for the time over which we are - // applying it - error *= deltat; - - // calculate the new proportional offset + // we now want to calculate _omega_P and _omega_I. The + // _omega_P value is what drags us quickly to the + // accelerometer reading. _omega_P = error * _kp_roll_pitch; - // we limit the change in the integrator to the - // maximum gyro drift rate on each axis - float drift_limit = ToRad(_gyro_drift_rate) * deltat / _ki_roll_pitch; - error.x = constrain(error.x, -drift_limit, drift_limit); - error.y = constrain(error.y, -drift_limit, drift_limit); - error.z = constrain(error.z, -drift_limit, drift_limit); + // the _omega_I is the long term accumulated gyro + // error. This determines how much gyro drift we can + // handle. + Vector3f omega_I_delta = error * (_ki_roll_pitch * deltat); - // update gyro drift estimate - _omega_I += error * _ki_roll_pitch; + // limit the slope of omega_I on each axis to + // the maximum drift rate + float drift_limit = _gyro_drift_limit * deltat; + omega_I_delta.x = constrain(omega_I_delta.x, -drift_limit, drift_limit); + omega_I_delta.y = constrain(omega_I_delta.y, -drift_limit, drift_limit); + omega_I_delta.z = constrain(omega_I_delta.z, -drift_limit, drift_limit); + + _omega_I += omega_I_delta; } // these sums support the reporting of the DCM state via MAVLink @@ -394,71 +404,76 @@ AP_DCM::drift_correction(float deltat) // reference vector. In between times we rely on the gyros for // yaw. Avoiding this calculation on every call to // update_DCM() saves a lot of time - if (_compass && _compass->use_for_yaw() && - _compass->last_update != _compass_last_update) { - if (_have_initial_yaw) { - // Equation 23, Calculating YAW error - // We make the gyro YAW drift correction based - // on compass magnetic heading - error_course = (_dcm_matrix.a.x * _compass->heading_y) - (_dcm_matrix.b.x * _compass->heading_x); + if (_compass && _compass->use_for_yaw()) { + if (_compass->last_update != _compass_last_update) { yaw_deltat = 1.0e-6*(_compass->last_update - _compass_last_update); - _compass_last_update = _compass->last_update; - } else { - // this is our first estimate of the yaw, - // construct a DCM matrix based on the current - // roll/pitch and the compass heading, but - - // first ensure the compass heading has been - // calculated - _compass->calculate(_dcm_matrix); - - // now construct a new DCM matrix - _compass->null_offsets_disable(); - rotation_matrix_from_euler(_dcm_matrix, roll, pitch, _compass->heading); - _compass->null_offsets_enable(); - _have_initial_yaw = true; - _compass_last_update = _compass->last_update; - } - } else if (_gps && _gps->status() == GPS::GPS_OK && - _gps->last_fix_time != _gps_last_update) { - // Use GPS Ground course to correct yaw gyro drift - if (_gps->ground_speed >= GPS_SPEED_MIN) { - if (_have_initial_yaw) { - float course_over_ground_x = cos(ToRad(_gps->ground_course/100.0)); - float course_over_ground_y = sin(ToRad(_gps->ground_course/100.0)); + if (_have_initial_yaw && yaw_deltat < 2.0) { // Equation 23, Calculating YAW error - error_course = (_dcm_matrix.a.x * course_over_ground_y) - (_dcm_matrix.b.x * course_over_ground_x); - yaw_deltat = 1.0e-3*(_gps->last_fix_time - _gps_last_update); - _gps_last_update = _gps->last_fix_time; - } else { - // when we first start moving, set the - // DCM matrix to the current - // roll/pitch values, but with yaw - // from the GPS - if (_compass) { - _compass->null_offsets_disable(); - } - rotation_matrix_from_euler(_dcm_matrix, roll, pitch, ToRad(_gps->ground_course)); - if (_compass) { - _compass->null_offsets_enable(); - } - _have_initial_yaw = true; + // We make the gyro YAW drift correction based + // on compass magnetic heading + error_course = (_dcm_matrix.a.x * _compass->heading_y) - (_dcm_matrix.b.x * _compass->heading_x); + _compass_last_update = _compass->last_update; + } else { + // this is our first estimate of the yaw, + // or the compass has come back online after + // no readings for 2 seconds. + // + // construct a DCM matrix based on the current + // roll/pitch and the compass heading. + // First ensure the compass heading has been + // calculated + _compass->calculate(_dcm_matrix); + + // now construct a new DCM matrix + _compass->null_offsets_disable(); + rotation_matrix_from_euler(_dcm_matrix, roll, pitch, _compass->heading); + _compass->null_offsets_enable(); + _have_initial_yaw = true; + _compass_last_update = _compass->last_update; error_course = 0; - _gps_last_update = _gps->last_fix_time; } - } else if (_gps->ground_speed >= GPS_SPEED_RESET) { - // we are not going fast enough to use GPS for - // course correction, but we won't reset - // _have_initial_yaw yet, instead we just let - // the gyro handle yaw - error_course = 0; - } else { - // we are moving very slowly. Reset - // _have_initial_yaw and adjust our heading - // rapidly next time we get a good GPS ground - // speed - error_course = 0; - _have_initial_yaw = false; + } + } else if (_gps && _gps->status() == GPS::GPS_OK) { + if (_gps->last_fix_time != _gps_last_update) { + // Use GPS Ground course to correct yaw gyro drift + if (_gps->ground_speed >= GPS_SPEED_MIN) { + yaw_deltat = 1.0e-3*(_gps->last_fix_time - _gps_last_update); + if (_have_initial_yaw && yaw_deltat < 2.0) { + float course_over_ground_x = cos(ToRad(_gps->ground_course/100.0)); + float course_over_ground_y = sin(ToRad(_gps->ground_course/100.0)); + // Equation 23, Calculating YAW error + error_course = (_dcm_matrix.a.x * course_over_ground_y) - (_dcm_matrix.b.x * course_over_ground_x); + _gps_last_update = _gps->last_fix_time; + } else { + // when we first start moving, set the + // DCM matrix to the current + // roll/pitch values, but with yaw + // from the GPS + if (_compass) { + _compass->null_offsets_disable(); + } + rotation_matrix_from_euler(_dcm_matrix, roll, pitch, ToRad(_gps->ground_course)); + if (_compass) { + _compass->null_offsets_enable(); + } + _have_initial_yaw = true; + error_course = 0; + _gps_last_update = _gps->last_fix_time; + } + } else if (_gps->ground_speed >= GPS_SPEED_RESET) { + // we are not going fast enough to use GPS for + // course correction, but we won't reset + // _have_initial_yaw yet, instead we just let + // the gyro handle yaw + error_course = 0; + } else { + // we are moving very slowly. Reset + // _have_initial_yaw and adjust our heading + // rapidly next time we get a good GPS ground + // speed + error_course = 0; + _have_initial_yaw = false; + } } } @@ -467,22 +482,30 @@ AP_DCM::drift_correction(float deltat) // only calculate it when we get new data from the yaw // reference source if (yaw_deltat == 0 || error_course == 0) { - // nothing to do + // we don't have a new reference heading. Slowly + // decay the _omega_yaw_P to ensure that if we have + // lost the yaw reference sensor completely we don't + // keep using a stale offset + _omega_yaw_P *= 0.97; return; } + // ensure the course error is scaled from -PI to PI + if (error_course > PI) { + error_course -= 2*PI; + } else if (error_course < -PI) { + error_course += 2*PI; + } + // Equation 24, Applys the yaw correction to the XYZ rotation of the aircraft + // this gives us an error in radians error = _dcm_matrix.c * error_course; // Adding yaw correction to proportional correction vector. We // allow the yaw reference source to affect all 3 components - // of _omega_P as we need to be able to correctly hold a + // of _omega_yaw_P as we need to be able to correctly hold a // heading when roll and pitch are non-zero - _omega_P += error * _kp_yaw; - - // limit maximum gyro drift from yaw reference - float drift_limit = ToRad(_gyro_drift_rate) * yaw_deltat / _ki_yaw; - error.z = constrain(error.z, -drift_limit, drift_limit); + _omega_yaw_P = error * _kp_yaw; // add yaw correction to integrator correction vector, but // only for the z gyro. We rely on the accelerometers for x @@ -490,7 +513,13 @@ AP_DCM::drift_correction(float deltat) // x/y drift correction is too inaccurate, and can lead to // incorrect builups in the x/y drift. We rely on the // accelerometers to get the x/y components right - _omega_I.z += error.z * _ki_yaw; + float omega_Iz_delta = error.z * (_ki_yaw * yaw_deltat); + + // limit the slope of omega_I.z to the maximum gyro drift rate + float drift_limit = _gyro_drift_limit * yaw_deltat; + omega_Iz_delta = constrain(omega_Iz_delta, -drift_limit, drift_limit); + + _omega_I.z += omega_Iz_delta; // we keep the sum of yaw error for reporting via MAVLink. _error_yaw_sum += error_course; diff --git a/libraries/AP_DCM/AP_DCM.h b/libraries/AP_DCM/AP_DCM.h index d1a0890653..d8a2d1f268 100644 --- a/libraries/AP_DCM/AP_DCM.h +++ b/libraries/AP_DCM/AP_DCM.h @@ -25,10 +25,8 @@ class AP_DCM public: // Constructors AP_DCM(IMU *imu, GPS *&gps) : - _kp_roll_pitch(18.0), - _ki_roll_pitch(0.0006), - _kp_yaw(9.0), - _ki_yaw(0.003), + _kp_roll_pitch(0.13), + _kp_yaw(0.8), _gps(gps), _imu(imu), _dcm_matrix(1, 0, 0, @@ -36,7 +34,16 @@ public: 0, 0, 1), _health(1.), _toggle(0) - {} + { + // base the ki values by the sensors maximum drift + // rate. The APM2 has gyros which are much less drift + // prone than the APM1, so we should have a lower ki, + // which will make us less prone to increasing omegaI + // incorrectly due to sensor noise + _gyro_drift_limit = imu->get_gyro_drift_rate(); + _ki_roll_pitch = _gyro_drift_limit * 3; + _ki_yaw = _gyro_drift_limit * 4; + } // Accessors @@ -46,7 +53,7 @@ public: Matrix3f get_dcm_transposed(void) {Matrix3f temp = _dcm_matrix; return temp.transpose();} // return the current drift correction integrator value - Vector3f get_integrator(void) {return _omega_I; } + Vector3f get_gyro_drift(void) {return _omega_I; } float get_health(void) {return _health;} void set_centripetal(bool b) {_centripetal = b;} @@ -55,7 +62,7 @@ public: // Methods void update_DCM(uint8_t drift_correction_frequency=1); - void update_DCM_fast(void); + void update(void) { update_DCM(); } void matrix_reset(bool recover_eulers = false); long roll_sensor; // Degrees * 100 @@ -70,18 +77,6 @@ public: uint8_t renorm_range_count; uint8_t renorm_blowup_count; - float kp_roll_pitch() { return _kp_roll_pitch; } - void kp_roll_pitch(float v) { _kp_roll_pitch = v; } - - float ki_roll_pitch() { return _ki_roll_pitch; } - void ki_roll_pitch(float v) { _ki_roll_pitch = v; } - - float kp_yaw() { return _kp_yaw; } - void kp_yaw(float v) { _kp_yaw = v; } - - float ki_yaw() { return _ki_yaw; } - void ki_yaw(float v) { _ki_yaw = v; } - // status reporting float get_accel_weight(void); float get_renorm_val(void); @@ -93,6 +88,7 @@ private: float _ki_roll_pitch; float _kp_yaw; float _ki_yaw; + float _gyro_drift_limit; // radians/s/s bool _have_initial_yaw; // Methods @@ -106,9 +102,6 @@ private: void drift_correction(float deltat); void euler_angles(void); - // max rate of gyro drift in degrees/s/s - static const float _gyro_drift_rate = 0.04; - // members Compass * _compass; @@ -126,11 +119,12 @@ private: Vector3f _accel_vector; Vector3f _accel_sum; - Vector3f _gyro_vector; // Store the gyros turn rate in a vector - Vector3f _omega_P; // Omega Proportional correction - Vector3f _omega_I; // Omega Integrator correction - Vector3f _omega_integ_corr; // Partially corrected Gyro_Vector data - used for centrepetal correction - Vector3f _omega; // Corrected Gyro_Vector data + Vector3f _gyro_vector; // Store the gyros turn rate in a vector + Vector3f _omega_P; // accel Omega Proportional correction + Vector3f _omega_yaw_P; // yaw Omega Proportional correction + Vector3f _omega_I; // Omega Integrator correction + Vector3f _omega_integ_corr; // Partially corrected Gyro_Vector data - used for centrepetal correction + Vector3f _omega; // Corrected Gyro_Vector data Vector3f _omega_sum; Vector3f _omega_smoothed; float _health;