2015-02-21 06:55:21 -04:00
|
|
|
/*
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
2015-08-11 03:28:45 -03:00
|
|
|
#include <AP_HAL/AP_HAL.h>
|
2015-02-21 06:55:21 -04:00
|
|
|
|
|
|
|
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
|
2016-11-10 22:18:45 -04:00
|
|
|
#include <AP_BoardConfig/AP_BoardConfig.h>
|
2015-02-21 06:55:21 -04:00
|
|
|
#include "AP_RangeFinder_PX4_PWM.h"
|
|
|
|
|
|
|
|
#include <sys/types.h>
|
|
|
|
#include <sys/stat.h>
|
|
|
|
#include <fcntl.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
|
|
|
|
#include <drivers/drv_pwm_input.h>
|
|
|
|
#include <drivers/drv_hrt.h>
|
|
|
|
#include <drivers/drv_sensor.h>
|
|
|
|
#include <uORB/topics/pwm_input.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <errno.h>
|
2016-03-31 18:43:36 -03:00
|
|
|
#include <cmath>
|
2015-02-21 06:55:21 -04:00
|
|
|
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
|
2016-11-10 22:18:45 -04:00
|
|
|
extern "C" {
|
|
|
|
int pwm_input_main(int, char **);
|
|
|
|
};
|
|
|
|
|
2015-02-21 06:55:21 -04:00
|
|
|
/*
|
|
|
|
The constructor also initialises the rangefinder. Note that this
|
|
|
|
constructor is not called until detect() returns true, so we
|
|
|
|
already know that we should setup the rangefinder
|
|
|
|
*/
|
|
|
|
AP_RangeFinder_PX4_PWM::AP_RangeFinder_PX4_PWM(RangeFinder &_ranger, uint8_t instance, RangeFinder::RangeFinder_State &_state) :
|
2017-05-29 14:02:51 -03:00
|
|
|
AP_RangeFinder_Backend(_ranger, instance, _state, MAV_DISTANCE_SENSOR_UNKNOWN),
|
2015-02-21 06:55:21 -04:00
|
|
|
_last_timestamp(0),
|
|
|
|
_last_pulse_time_ms(0),
|
|
|
|
_disable_time_ms(0),
|
|
|
|
_good_sample_count(0),
|
|
|
|
_last_sample_distance_cm(0)
|
|
|
|
{
|
|
|
|
_fd = open(PWMIN0_DEVICE_PATH, O_RDONLY);
|
|
|
|
if (_fd == -1) {
|
|
|
|
hal.console->printf("Unable to open PX4 PWM rangefinder\n");
|
2015-04-13 03:06:02 -03:00
|
|
|
set_status(RangeFinder::RangeFinder_NotConnected);
|
2015-02-21 06:55:21 -04:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// keep a queue of 20 samples
|
|
|
|
if (ioctl(_fd, SENSORIOCSQUEUEDEPTH, 20) != 0) {
|
|
|
|
hal.console->printf("Failed to setup range finder queue\n");
|
2015-04-13 03:06:02 -03:00
|
|
|
set_status(RangeFinder::RangeFinder_NotConnected);
|
2015-02-21 06:55:21 -04:00
|
|
|
return;
|
|
|
|
}
|
2015-04-13 03:06:02 -03:00
|
|
|
|
|
|
|
// initialise to connected but no data
|
|
|
|
set_status(RangeFinder::RangeFinder_NoData);
|
2015-02-21 06:55:21 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
close the file descriptor
|
|
|
|
*/
|
|
|
|
AP_RangeFinder_PX4_PWM::~AP_RangeFinder_PX4_PWM()
|
|
|
|
{
|
|
|
|
if (_fd != -1) {
|
|
|
|
close(_fd);
|
|
|
|
}
|
2015-04-13 03:06:02 -03:00
|
|
|
set_status(RangeFinder::RangeFinder_NotConnected);
|
2015-02-21 06:55:21 -04:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
see if the PX4 driver is available
|
|
|
|
*/
|
|
|
|
bool AP_RangeFinder_PX4_PWM::detect(RangeFinder &_ranger, uint8_t instance)
|
|
|
|
{
|
2017-01-27 05:21:12 -04:00
|
|
|
#if !defined(CONFIG_ARCH_BOARD_PX4FMU_V1) && \
|
|
|
|
!defined(CONFIG_ARCH_BOARD_AEROFC_V1)
|
2016-11-10 22:18:45 -04:00
|
|
|
if (AP_BoardConfig::px4_start_driver(pwm_input_main, "pwm_input", "start")) {
|
|
|
|
hal.console->printf("started pwm_input driver\n");
|
|
|
|
}
|
|
|
|
#endif
|
2015-02-21 06:55:21 -04:00
|
|
|
int fd = open(PWMIN0_DEVICE_PATH, O_RDONLY);
|
|
|
|
if (fd == -1) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
close(fd);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AP_RangeFinder_PX4_PWM::update(void)
|
|
|
|
{
|
|
|
|
if (_fd == -1) {
|
2015-04-13 03:06:02 -03:00
|
|
|
set_status(RangeFinder::RangeFinder_NotConnected);
|
2015-02-21 06:55:21 -04:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct pwm_input_s pwm;
|
|
|
|
float sum_cm = 0;
|
|
|
|
uint16_t count = 0;
|
|
|
|
const float scaling = ranger._scaling[state.instance];
|
2015-11-19 23:14:24 -04:00
|
|
|
uint32_t now = AP_HAL::millis();
|
2015-02-21 06:55:21 -04:00
|
|
|
|
|
|
|
while (::read(_fd, &pwm, sizeof(pwm)) == sizeof(pwm)) {
|
|
|
|
// report the voltage as the pulse width, so we get the raw
|
|
|
|
// pulse widths in the log
|
|
|
|
state.voltage_mv = pwm.pulse_width;
|
|
|
|
|
|
|
|
_last_pulse_time_ms = now;
|
|
|
|
|
|
|
|
// setup for scaling in meters per millisecond
|
2015-04-04 20:06:37 -03:00
|
|
|
float distance_cm = pwm.pulse_width * 0.1f * scaling + ranger._offset[state.instance];
|
2015-02-21 06:55:21 -04:00
|
|
|
|
|
|
|
float distance_delta_cm = fabsf(distance_cm - _last_sample_distance_cm);
|
|
|
|
_last_sample_distance_cm = distance_cm;
|
|
|
|
|
|
|
|
if (distance_delta_cm > 100) {
|
|
|
|
// varying by more than 1m in a single sample, which means
|
|
|
|
// between 50 and 100m/s vertically - discard
|
|
|
|
_good_sample_count = 0;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (_good_sample_count > 1) {
|
|
|
|
count++;
|
|
|
|
sum_cm += distance_cm;
|
|
|
|
_last_timestamp = pwm.timestamp;
|
|
|
|
} else {
|
|
|
|
_good_sample_count++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// if we haven't received a pulse for 1 second then we may need to
|
|
|
|
// reset the timer
|
|
|
|
int8_t stop_pin = ranger._stop_pin[state.instance];
|
|
|
|
uint16_t settle_time_ms = (uint16_t)ranger._settle_time_ms[state.instance];
|
|
|
|
|
|
|
|
if (stop_pin != -1 && out_of_range()) {
|
|
|
|
// we are above the power saving range. Disable the sensor
|
|
|
|
hal.gpio->pinMode(stop_pin, HAL_GPIO_OUTPUT);
|
|
|
|
hal.gpio->write(stop_pin, false);
|
2015-04-13 03:06:02 -03:00
|
|
|
set_status(RangeFinder::RangeFinder_NoData);
|
2015-02-21 06:55:21 -04:00
|
|
|
state.distance_cm = 0;
|
|
|
|
state.voltage_mv = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2015-04-13 03:06:02 -03:00
|
|
|
// if we have not taken a reading in the last 0.2s set status to No Data
|
2015-11-19 23:14:24 -04:00
|
|
|
if (AP_HAL::micros64() - _last_timestamp >= 200000) {
|
2015-04-13 03:06:02 -03:00
|
|
|
set_status(RangeFinder::RangeFinder_NoData);
|
|
|
|
}
|
2015-02-21 06:55:21 -04:00
|
|
|
|
|
|
|
/* if we haven't seen any pulses for 0.5s then the sensor is
|
|
|
|
probably dead. Try resetting it. Tests show the sensor takes
|
|
|
|
about 0.2s to boot, so 500ms offers some safety margin
|
|
|
|
*/
|
|
|
|
if (now - _last_pulse_time_ms > 500U && _disable_time_ms == 0) {
|
|
|
|
ioctl(_fd, SENSORIOCRESET, 0);
|
|
|
|
_last_pulse_time_ms = now;
|
|
|
|
|
|
|
|
// if a stop pin is configured then disable the sensor for the
|
|
|
|
// settle time
|
|
|
|
if (stop_pin != -1) {
|
|
|
|
hal.gpio->pinMode(stop_pin, HAL_GPIO_OUTPUT);
|
|
|
|
hal.gpio->write(stop_pin, false);
|
|
|
|
_disable_time_ms = now;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* the user can configure a settle time. This controls how
|
|
|
|
long the sensor is disabled for using the stop pin when it is
|
|
|
|
reset. This is used both to make sure the sensor is properly
|
|
|
|
reset, and also to allow for power management by running a low
|
|
|
|
duty cycle when it has no signal
|
|
|
|
*/
|
|
|
|
if (stop_pin != -1 && _disable_time_ms != 0 &&
|
|
|
|
(now - _disable_time_ms > settle_time_ms)) {
|
|
|
|
hal.gpio->write(stop_pin, true);
|
|
|
|
_disable_time_ms = 0;
|
|
|
|
_last_pulse_time_ms = now;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (count != 0) {
|
|
|
|
state.distance_cm = sum_cm / count;
|
2015-04-13 03:06:02 -03:00
|
|
|
|
|
|
|
// update range_valid state based on distance measured
|
|
|
|
update_status();
|
2015-02-21 06:55:21 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // CONFIG_HAL_BOARD
|